Fiber Optic Connector Technology Reliability Transfers To Oil and Gas Applications
Need help with your project?
Fiber Optic Connector Technology Reliability Transfers To Oil and Gas Applications
Fiber optics (FO) technology is finding new uses in subsea applications. Fiber allows longer transmission distances and higher data rates than copper — a fortuitous development, as offshore drilling moves to deeper depths. Petroleum exploration and production are also becoming smarter, as operators pursue real-time information and analysis of both the individual well and the entire production chain from well to topside or land-based platform. Compared to copper, the high bandwidth of fiber allows richer data streams and much longer step-out distances (i.e., distance between subsea installation and surface facilities). Umbilical cables can easily reach lengths of 10-15 km, while pipeline cables, used for sensing, can extend to 40 km.
Optical fibers also make superior distributed sensors. Changes in pressure or temperature modify the backscatter profile, allowing highly accurate measurements by monitoring the backscattered light. Because the velocity of light in a fiber is well understood, the backscattered light reveals information on both the magnitude of measurement and its location along the length of the fiber.
Fiber Optic Connector Technology Reliability Transfers To Oil and Gas Applications
Need help with your project?
Fiber Optic Connector Technology Reliability Transfers To Oil and Gas Applications
Fiber optics (FO) technology is finding new uses in subsea applications. Fiber allows longer transmission distances and higher data rates than copper — a fortuitous development, as offshore drilling moves to deeper depths. Petroleum exploration and production are also becoming smarter, as operators pursue real-time information and analysis of both the individual well and the entire production chain from well to topside or land-based platform. Compared to copper, the high bandwidth of fiber allows richer data streams and much longer step-out distances (i.e., distance between subsea installation and surface facilities). Umbilical cables can easily reach lengths of 10-15 km, while pipeline cables, used for sensing, can extend to 40 km.
Optical fibers also make superior distributed sensors. Changes in pressure or temperature modify the backscatter profile, allowing highly accurate measurements by monitoring the backscattered light. Because the velocity of light in a fiber is well understood, the backscattered light reveals information on both the magnitude of measurement and its location along the length of the fiber.