

DIGITAL THERMOPILE SENSORS APPLICATION NOTE

This document is meant to provide an introduction in the functionality and usage of digital thermopile sensors for contactless temperature measurement. Thermopiles are mainly used for contact-less temperature measurement in many applications. Their function is to transfer the heat radiation emitted from the objects into voltage output. Major applications are appliances like microwave oven, clothes dryer, automatic cooking, medical devices like ear and fore head thermometer, automotive applications like car climate control, seat occupancy, blind spot alert, black ice warning, consumer products like printer, copier, mobile phone and many industry applications like paper web, plastic parts etc.

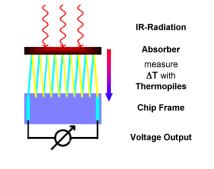
FIGURE 1 Thermopile Component TSD305-1C55

Infrared Temperature Measurement

Any object emits infrared radiation. The radiation power is increasing with growing surface temperatures. Based on this relation, thermopiles measure the emitted power and determine the object's temperature precisely.

Thermopile infrared sensors are based on two physical effects:

Black body radiation: Any object with a temperature above 0 K emits electromagnetic radiation according Planck's law.
 The integral over Planck's curve is called the Stefan-Boltzmann-Law which gives the total emitted power:


$$P = A \cdot \varepsilon \cdot \sigma \cdot T^4$$

P=emitted power, A=surface area, ϵ =emissivity of surface, σ =Stefan-Boltzmann-Constant=5.67·10-8W/(m2·K4), T=absolute temperature (in K)

- For surface temperatures <700°C this infrared radiation only. If the surface temperature exceeds 700°C an increasing part of the emitted radiation is visible light, e.g. glowing steel, incandescent lamp etc.
- Seebeck effect: Exposing a pair of contacts of dissimilar conductors to a temperature difference results in a voltage difference.

Thermopile Sensor Function

The thermopile infrared sensor consists of an absorber, which is thermally isolated from a frame and in series connected thermocouples. When the absorber is pointed towards an object with a temperature different from the absorber, then the power emitted by object and absorber differs as well. There is a netto radiative heat flow to/from the absorber which is heating/cooling the absorber. This resulting temperature difference between absorber and frame is converted by the thermopile (acc. Definition 1) into a voltage. When also the temperature of the frame is measured, using e.g. a NTC thermistor, the objects temperature can be calculated using the Stefan-Boltzmann-Law.

Anatomy of Thermopile Sensor Components

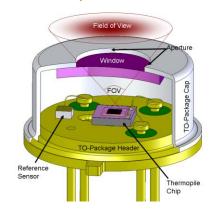


FIGURE 3 Cross section through a Thermopile Sensor

A digital thermopile sensor also contains a signal processing unit.

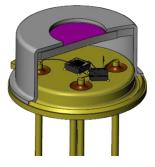


FIGURE 4 Cross section through a Digital Thermopile Sensor

Transport Recommendations

- Avoid touching of silicon window
- Avoid contamination of silicon window
- Avoid damage of silicon window (scratches, etc.)
- Avoid pin deformation
- Avoid compression of component housing

Cleaning Recommendations

- Isopropanol (other names: Iso-Propyl-Acohol (IPA), 2-Propanol),
 - use medical grade, pro analysis grade or purer
- Scratch and lint free cleaning tissue (e.g. Bemcot M-3II)

Using the wet tissue:

Clean from the center of the window or lens to the outside. Take care that you also clean the tiny step between optics and metal case of the thermopile properly

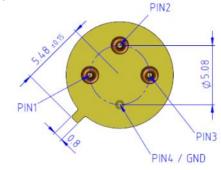
- Check for stains after wet cleaning, if necessary repeat the wet cleaning
- Check for lints after wet cleaning, if necessary wipe of lints with a dry tissue
- Please Note:

Some Q-tips have the cotton attached to the stick with glue. In some cases this glue is dissolved by the isopropanol and leaves a deposit on the optics. Due the infrared absorption of this deposit the calibration may be compromised.

Solder Recommendations

Process	Temperature	Max. Duration / s	Comment			
Wave Soldering ¹	260°C ±5°C	10	AOI recommended			
Hand Soldering ¹	375°C ±10°C	4	Control for flux residue and other contamination on the surface of the PCBA recommended			
Reflow Soldering		Not recommended				

¹ Parameter valid only for PB-free soldering process.


Direct Sunlight

Sun light radiation which is transmitted through a glass window may influence the measurement accuracy. To avoid this, the thermopile sensor is equipped with a long wavelength filter. Due to filter characteristics a small portion of radiation will be added to the radiation of the object. In case of direct sunlight exposure this error can be up to $+0.2^{\circ}$ C.

Touching the Sensors Cap

User should avoid touching the sensors cap. There will still be a measurement deviation after changing the sensors temperature rapidly.

Setting up Connections

Pin	Name	Туре	Function	
1	SCL	L DI I ² C Clock		
2	SDA	DIO	I ² C Data	
3	V _{DD}	Р	Supply Voltage	
4	V _{ss}	Р	Ground	

Status Byte

Each return starts with a status byte followed by the requested data word.

Bit	7	6	5	4	3	2	1	0
Meaning			Busy			Memory Error		
• B	USV:	1 = Sensor	is busy. The re	equested data	is not availabl	e vet.		

Busy: 1 = Sensor is busy. The requested data is not available yet.

Memory Error: 1 = Memory integrity check failed. Memory was changed after factory calibration.

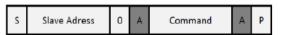
Commands

Note: Each return starts with a status byte followed by the requested data word.

Command	Return	Description		
0x00 0x39 16 bit EEPROM data		Read data from EEPROM address (0x00 … 0x39) matching the command		
0xAF	24 bit object temperature ADC, 24 bit sensor temperature ADC	Measure object temperature and sensor temperature ADC 16 times and calculates mean value. Store data in output buffer.		

Read EEPROM

Write Command:



Read EEPROM Data:

s	Slave Adress	1	A	Status Byte	A	EEPROM Data [15:8]	A	EEPROM Data [7:0]	Ν	Ρ	
---	--------------	---	---	-------------	---	-----------------------	---	----------------------	---	---	--

Perform Measurement and Read ADC Data

Write Command:

Read ADC Data:

S Slave Adress 1	A Status Byte A	Object Temp. ADC [23:16]	Object Temp. ADC A [15:8]	Object Temp. ADC [7:0]	A Sensor Temp. ADC [23:16]	A Sensor Temp. ADC [15:8]	A Sensor Temp. ADC [7:0]	N P
				Г	from mas	ter to slave	S start cond	dition
				L .			s start cond	inton
					from slave	e to master	P stop cond	lition

not acknowledge

acknowledge

А

Ν

EEPROM Content

Address / hex	Address / dec	Address / dec Description		Format	Example		
Address / nex	Address / dec	Description	Name			Value	
0x00	0	Lot Nr.		UINT16	15001	YY WWW	
0x01	1	Serial Number		UINT16	12345	Number	
0X02	2	I ² C Address Valid range: 0x00 … 0x7F, 0x04 … 0x07 are reserved	l ² CAdd	UINT16	0x00	0	
0x03 0x19	2 25	Factory Calibration Data					
0x1A	26	Min. Sensor Temp. / °C	T _{SenMin}	SINT16	0xFFEC	-20°C	
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C	
0x1C	28	Min. Object Temp. / °C	T _{ObjMin}	SINT16	0x0000	0°C	
0x1D	29	Max. Object Temp. / °C	T _{ObjMax}	SINT16	0x0064	100°C	
0x1E	30	Tanana tana Ora filada at		IEEE 754 H-Word	0xBB96	0.0040	
0x1F	31	Temperature Coefficient	TC	IEEE 754 L-Word	0xBB99	-0.0046	
0x20	32		-	IEEE 754 H-Word	0x41D7	00.00	
0x21	33	Reference Temperature	T _{REF}	IEEE 754 L-Word	0x70A4	26.93	
0x22	34	Compensation		IEEE 754 H-Word	0x3A07		
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	5.161E-04	
0x24	36	Compensation		IEEE 754 H-Word	0x3F10		
0x25	37	Coefficient k3	k3 _{comp}	IEEE 754 L-Word	0x5CEC	5.639E-01	
0x26	38	Compensation		IEEE 754 H-Word	0x4367		
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02	
0x28	40	Compensation		IEEE 754 H-Word	0x4724		
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04	
0x2A	42	Compensation		IEEE 754 H-Word	0xC9A0	4.0405.0	
0x2B	43	Coefficient k0	k0 _{comp}	IEEE 754 L-Word	0x254D	-1.312E+06	
0x2C	44						
0x2D	45	Not used					
0x2E	46	ADC → T		IEEE 754 H-Word	0x944B	4 000 - 01	
0x2F	47	Coefficient k4	k4 _{Obj}	IEEE 754 L-Word	0xD24F	-1.029E-26	
0x30	48	ADC \rightarrow T		IEEE 754 H-Word	0x2052		
0x31	49	Coefficient k3	k3 _{Obj}	IEEE 754 L-Word	0xF1C2	1.787E-19	
0x32	50	ADC → T		IEEE 754 H-Word	0xABE5		
0x33	51	Coefficient k2	k2 _{Obj}	IEEE 754 L-Word	0x991B	-1.631E-12	
0x34	52	ADC → T		IEEE 754 H-Word	0x3797	4 0005 00	
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.802E-05	
0x36	54	ADC → T		IEEE 754 H-Word	0x41D7		
0x37	55	Coefficient k0	k0 _{Obj}	IEEE 754 L-Word	0x6DBA	2.693E+01	
0x38	56	Status		UINT16	TBD		

Number Format

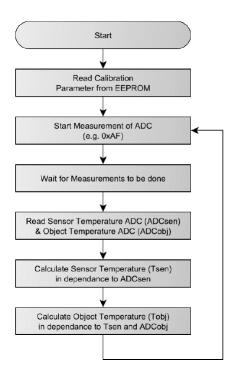
UINT16

٠	Description:	Unsigned integer
•	Bits	16
•	Min (dec/hec/bin)	0 / 0x0000 / 0b0000 0000 0000 0000
٠	Max (dec/hec/bin)	65,535 / 0xFFFF / 0b1111 1111 1111 1111

SINT16

•	Description:	Signed integer
٠	Bits	16
•	Min (dec/hec/bin) -	32,768 / 0x8000 / 0b1000 0000 0000 0000
٠	Max (dec/hec/bin)	32,767 / 0x7FFF / 0b0111 1111 1111 1111

FLOAT IEEE 754


•	Description:	Float
٠	Bits	32
٠	Min (dec/hec/bin)	-1.4E-45 / 0x80000001 / 0b1000 0000 0000 0000 0000 000
٠	Max (dec/hec/bin)	3.403E38 / 0x7f800000 / 0b0111 1111 1000 0000 0000 0000
٠	Example:	H-Word 0x3DCC L-Word 0xCCCD → 0b0011 1101 1100 1100 1100 1100 1101 → 0.1

FLOAT IEEE 754 Conversions

The two integer words can easily be converted to a floating-point number by using a union consisting of an integer array and a float.

```
void main(void)
{
    union
    {
        unsigned int iValue[2]; // 16bit unsigned integer
        float fValue; // float IEEE 754
    } MyUnion;
    while(1)
    {
        MyUnion.iValue[1] = 0x3dcc;
        MyUnion.iValue[0] = 0xcccd;
        //MyUnion.fValue = 0.1;
    }
}
```

Temperature Calculation

Sensor Temperature

The sensor temperature T_{Sen} is calculated from the corresponding 24 bit ADC value ADC_{sen}.

Name	Description	Format	Range	
			Min	Мах
ADC _{sen}	ADC Sensor Temperature	INT24	0	16,777,216

 ADC_{sen} is scaled to cover the complete sensor temperature range from T_{SenMin} to T_{SenMax} .

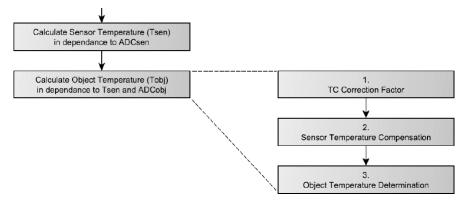
Adress / hex	Adress / dec Description		Name	Format	Example	
					Value	Мах
0x1A	26	Min. Sensor Temp. / °C	T_{SenMin}	SINT16	0xFFEC	-20°C
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C

Formula:

 $T_{sen} = ADC_{sen} / 2^{24} \times (T_{SenMax} - T_{SenMin}) + T_{SenMin}$

Example:

ADCsen = 6,364,157


Object Temperature

The object temperature T_{obj} is calculated in dependence of the sensor temperature T_{sen} and ADC_{Obj}.

ADC_{obj} is shifted by 2²³ in order to provide unsigned integer values for positive and negative measurement values.

Name	Description	Format	Rai	nge
		N		Max
ADC _{obj}	ADC Object Temperature Shifted by 2 ²³ (0 is represented by 8,388,608)	INT24	0	16,777,216

The process consists of three successive steps.

TC Correction Factor

Adress / hex	Adress / dec	Description	Name	Format	Exan	nple
					Content	Value
0x1E	30	Temperature Coefficient	тс	IEEE 754 H-Word	0xBB96	-0.0046
0x1F	31	remperature Coencient	10	IEEE 754 L-Word	0xBB99	-0.0040
0x20	32	Deference Temperature	т	IEEE 754 H-Word	0x41D7	+26.93
0x21	33	Reference Temperature	T _{REF}	IEEE 754 L-Word	0x70A4	+∠0.93

Formula:

Example:

T _{sen} =	+19.83°C
T _{ref} =	+26.93°C
TC =	-0.0046

$TCF = 1 + [(T_{sen} - T_{ref}) \times TC]$

Temperature Compensation

Adress / hex	Adress / dec	Adress / dec Description Name		Format	Example	
		Becomption			Content	Value
0x22	34	Compensation	4	IEEE 754 H-Word	0x3A07	
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	5.161E-04
0x24	36	Compensation Coefficient k3	10	IEEE 754 H-Word	0x3F10	
0x25	37		k3 _{comp}	IEEE 754 L-Word	0x5CEC	5.639E-01
0x26	38	Compensation Coefficient k2	40	IEEE 754 H-Word	0x4367	2 2115 .02
0x27	39		k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02
0x28	40	Compensation Coefficient k1	64	IEEE 754 H-Word	0x4724	4.207E+04
0x29	41		k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04
0x2A		Compensation	k0	IEEE 754 H-Word	0xC9A0	1 2125 106
0x2B		Coefficient k0	k0 _{comp}	IEEE 754 L-Word	0x254D	-1.312E+06

Formula:

Example:

		T _{sen} =	+19.83°C
		k4 _{comp} k0 _{comp}	See table above
Offset =	$\begin{array}{l} k4_{comp}\times Tsen^{4}\\ +\ k3_{comp}\times Tsen^{3}\\ +\ k2_{comp}\times Tsen^{2}\\ \end{array}$	Offset =	$= 5.161 \cdot 10^{-4} \times 19.83^{4} + 5.639 \cdot 10^{-1} \times 19.83^{3} + 2.311 \cdot 10^{2} \times 19.83^{2} + 0.0007 \cdot 10^{4} = 10.0007 \\$
	+ k1 _{comp} × Tsen + k0 _{comp}		+ 4.207·10 ⁴ × 19.83 + -1.312·10 ⁶
			= -382,399
Offectar		Offecture -	- 202 200 4 0227
Offset _{TC} =	Offset × TCF	Offset _{TC} =	= -382,399 × 1.0327

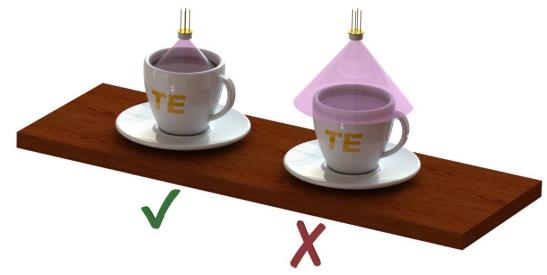
TE CONNECTIVITY SENSORS /// DIGITAL THERMOPILE SENSORS

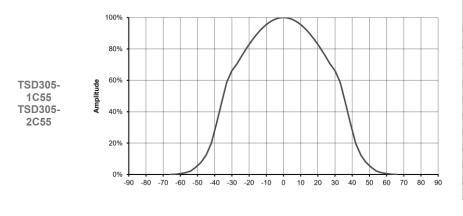
= -394,904

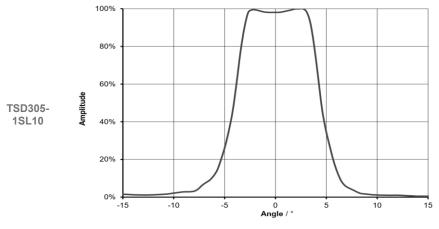
Object Temperature Determination

Adress / hex	Adress / dec	Description	Name	Format	Exa	ample	
					Content	Value	
0x2E	46	ADC \rightarrow T	1.4	IEEE 754 H-Word	0x944B	4 0005 00	
0x2F	47	Coefficient k4	k4 _{Obj}	IEEE 754 L-Word	0xD24F	-1.029E-26	
0x30	48	ADC → T Coefficient k3	1.0	IEEE 754 H-Word	0x2052		
0x31	49		k3 _{Obj}	IEEE 754 L-Word	0xF1C2	1.787E-19	
0x32	50	ADC → T Coefficient k2	ADC → T	10	IEEE 754 H-Word	0xABE5	-1.631E-12
0x33	51		k2 _{Obj}	IEEE 754 L-Word	0x991B	-1.031E-12	
0x34	52	ADC → T Coefficient k1	64	IEEE 754 H-Word	0x3797	1.802E-05	
0x35	53		k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.002E-05	
0x36	54	ADC → T	kO	IEEE 754 H-Word	0x41D7	2 6025 101	
0x37	55	Coefficient k0	k0 _{Obj}	IEEE 754 L-Word	0x6DBA	2.693E+01	

Formula:		Example:	
		ADC _{Obj} = k4 _{Obj} k0 _{Obj}	10,738,758 See table above
ADC _{Comp} =	Offset _{TC} + ADC _{Obj} - 2 ²³	ADC _{Comp} =	= -394,904 + 10,738,758 - 8,388,608 = 1,955,246
ADC _{CompTC} =	ADC _{comp} / TCF	ADC _{CompTC} =	= 1,955,246 / 1.0327 = 1,893,334
T _{Obj} =	$\begin{array}{l} k4_{Obj} \times ADC_{CompTC}^{4} \\ + \ k3_{Obj} \times ADC_{CompTC}^{3} \\ + \ k2_{Obj} \times ADC_{CompTC}^{2} \\ + \ k1_{Obj} \times ADC_{CompTC} \\ + \ k0_{Obj} \end{array}$	T _{Obj} =	= $-1.029 \cdot 10^{-26} \times 1,893,334^4$ + $1.787 \cdot 10^{-19} \times 1,893,334^3$ + $-1.631 \cdot 10^{-12} \times 1,893,334^2$ + $1.802 \cdot 10^{-5} \times 1,893,334$ + $2.693 \cdot 10$
			= <u>56.28°C</u>


Example Code


This example code is meant to illustrate the basic procedure to determinate the measured sensor and object temperatures with respect to TSD digital thermopile sensors. This code needs to be modified with respect to the compiler used.


```
// File: TSD Temperature Determination Example.c //
// Date: 01.11.2016 //
// Description: This example code is meant to illustrate the basical procedure //
// to determinat the measured sensor and object temperatures with //
// respect to TSD digital thermopile sensors. //
// This code is not meant to work or to be compiled. //
//*******
                                                      *****
void TSD Determinate Temperature (void)
{
       signed int siMinObjTemp, siMaxObjTemp, siMinSenTemp, siMaxSenTemp;
       float fTC, fTref, fK4com, fK3com, fK2com, fK1com, fK0com, fK4obj, fK3obj,
       fK2obj, fK1obj, fK0obj;
       float fTsen, fTobj;
float fTCF, fOffset, fADCcomp;
       signed long slADC Object, slADC Sensor;
       // Read Temperature Range Minimum & Maximum
       siMinSenTemp = (signed int)Read EE UInt(26);
       siMaxSenTemp = (signed int)Read EE UInt(27);
       siMinObjTemp = (signed int)Read EE UInt(28);
       siMaxObjTemp = (signed int)Read_EE_UInt(29);
       // Read all necessary coefficients from the memory, float tye
       fTref = Read EE Float(32);
       fTC = Read EE Float(30);
       fTref = Read EE Float(32);
       fK4com = Read EE Float (34);
       fK3com = Read EE Float (36);
       fK2com = Read EE Float (38);
       fK1com = Read EE Float (40);
       fK0com = Read EE Float (42);
       fK4obj = Read EE Float (46);
       fK3obj = Read_EE_Float(48);
       fK2obj = Read EE Float (50);
       fK1obj = Read EE Float (52);
       fKOobj = Read EE Float(54);
       // Read ADC Values for Object Temp. & Sensor Temp.
       Read ADC Values(&slADC Object, &slADC Sensor);
       // Calculate Sensor Temp. (slADC Sensor, Minimum & Maximum Sensor Temp.), Page 8
       fTsen = (float)slADC Sensor / 16777216.0 * (siMaxSenTemp - siMinSenTemp) + siMinSenTemp;
       // Calculate TC Correction Factor (Temp. Coefficient & Reference Temp.), Page 9fTCF = 1.0
       + ((fTsen - fTref) * fTC);
       // Calculate Offset Value, Page 10
       f0ffset = f0ffset + fK4com * fTsen * fTsen * fTsen * fTsen;
       fOffset = fOffset + fK3com * fTsen * fTsen * fTsen;
       fOffset = fOffset + fK2com * fTsen * fTsen;
       fOffset = fOffset + fK1com * fTsen;
       fOffset = fOffset + fK0com;
       fOffset = fOffset * fTCF;
       // Align ADC Value for Object Temperature, Page 11
       slADC Object = slADC Object - 8388608;
       // Calculate Object Temperature, Page 11
       fADCcomp = (float)slADC Object + fOffset;
       fADCcomp = fADCcomp / fTCF;
       fTobj = fTobj + fK4obj * fADCcomp * fADCcomp * fADCcomp;
       fTobj = fTobj + fK3obj * fADCcomp * fADCcomp * fADCcomp;
       fTobj = fTobj + fK2obj * fADCcomp * fADCcomp;
       fTobj = fTobj + fKlobj * fADCcomp;
       fTobj = fTobj + fKOobj;
       // Resulting Sensor Temperature = fTsen
       // Resulting Object Temperature = fTobj
```

Field of View

The thermopile's field of view must be directed to the object surface of interest. The distance to the surface or the surface diameter must be adjusted to ensure that the complete sensors field of view is covered by the object, see example on the left in the picture below.

Distance / mm	Min. Diameter / mm
10	24
20	43
30	62
40	82
50	101
100	198
200	391
300	584
400	777
500	970

Distance / mm	Min. Diameter / mm
10	6
20	8
30	10
40	11
50	13
100	22
200	39
300	57
400	74
500	92

Emissivity

Every object is transmitting infrared energy in dependence to its temperature. The emissivity is the ratio of the radiated power by an object to the radiation of an ideal black body. Common materials like liquids, clothes, human skin, foods have emissivity factors >0.90 and therefore they can be measured very accurately without adopting the sensors specification.

To compensate the measurement for an object with significant low emissivity, ADCobj needs to be adjusted.

Name	ame Description		Rai	nge	
		Format	Min	Мах	
ADC _{obj}	ADC Object Temperature Shifted by 2 ²³ (0 is represented by 8,388,608)	INT24	0	16,777,216	

Formula:

Example:

ADC _{Obj} =	10,738,758
Emissivityj	0.9 (90%)
ADC _{Corr} =	= 2,611,278

ADC_{Corr} =

(ADC_{Obj} - 2²³) / 0.9

Material	Emissivity
Alum	iinum
Polished	0.10 - 0.05
Oxidized	0.10 - 0.40
Rough	0.10 - 0.30
Anodized	0.60 - 0.95
Asphalt	0.90 - 1.00
Bra	ass
Polished	0.05
Oxidized	0.50 - 0.60
Burnished	0.30
Ceramic	0.90 - 0.95
Cor	oper
Polished	0.10
Oxidized	0.20 - 0.80
Foods	0.85 – 1.00
Gold	0.05
Gla	ass
Plate	0.90 - 0.95
Fused quartz	0.75

Material	Emissivity
Human Skin	0.99
Iron	
Polished	0.20
Oxidized	0.50 - 0.95
Rusted	0.50 - 0.70
Paint	
Aluminum paint	0.50
Bronze paint	0.80
On metal	0.60 - 0.90
On plastic, wood	0.80 - 0.95
Paper	0.85 – 1.00
Plastic	0.95 – 1.00
Stainless Steel	
Polished	0.10 - 0.15
Oxidized	0.45 - 0.95
Water	
Liquid	0.90 - 0.95
lce	0.95 – 1.00
Snow	0.80 - 1.00

te.com/sensorsolutions

TE Connectivity, TE, and the TE connectivity (logo) are trademarks of the TE Connectivity Ltd. family of companies. Other logos, products and/or company names referred to herein may be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2018 TE Connectivity Ltd. family of companies All Rights Reserved.

TE CONNECTIVITY

For more information contact TE Connectivity

Tel: +49-231-9740-0 CustomerCare.dtmd@te.com

