

Examining System Challenges When Implementing Next Generation Data Center Input/Output (I/O) Connectivity Nathan Tracy

1/25/18

EVERY CONNECTION COUNTS

Agenda

- Trends / Needs in Switching
- Challenges
- Next Gen I/O
- Equipment Impact
 - o Density
 - o Electrical Performance
 - \circ PCB Issues
 - \circ Reach
 - Thermal Management
 - $\circ~$ Air Flow
- Summary
- Conclusions

Industry Need/Trends - Bandwidth

 Datacom industry has a relentless thirst for more bandwidth. Many bottlenecks have to be overcome to quench that thirst

Ethernet Switch – Data Center Total Port Shipments

Ethernet Switch – Data Center Total SERDES Shipments

Ethernet switch port counts in data centers, more ports at higher speed = total bandwidth

SERDES shipments to data centers: rates have to increase to keep up with switch density and overall bandwidth

Data Courtesy of :

Merchant Silicon – Data Center Switching: ASIC Usage in the Tier 1 Cloud

Merchant Silicon's product cycles accelerating in the Cloud Spine/Core SERDES 2012 2013 2014 2015 2016 2017 2018 2019 2020 >2020 ASIC Size Technology Port Speed 1.3 Tbps 10 Gbps 10/40 Gbps 3.2 Tbps 25 Gbps 100 Gbps 6.4 Tbps 25 Gbps 100/200 Gbps 12.8 Tbps 50 Gbps 200/400 Gbps 12.8 Tbps 100 Gbps 400 Gbps

Cloud is driving to 12.8 <u>Tbps</u> in a 1 RU box (32 ports of 400 <u>Gbps</u>)

- Cloud is looking past 400 Gbps today
 - Form Factors need to look beyond 400 Gbps now
- Cloud is looking for Ethernet Fabrics to replace Routing and Transport
 - Distance requirements for pluggables is increasing

TE Connectivity Confidential & Proprietary. Do not reproduce or distribute.

Ethernet Switch – Data Center Bandwidth Shipping

Data Center Switches

Aggregate bandwidth:

of ports x bandwidth per port

Historically: 48 ports at 10 Gbps

- o 480 Gbps per line card
- \circ 48 electrical channels at 10 Gbps

Today: 32 ports at 100 Gbps

- $\circ~$ 3.2 Tbps per line card
- 128 electrical channels at 25 Gbps

Next Generation: 32 ports at 400 Gbps

- o 12.8 Tbps per line card
- \circ 512 electrical channels at 25 Gbps
- \circ 256 electrical channels at 50 Gbps

Next Generation Electrical Channels

512 channels at 25 Gbps is impractical

- Limited by SERDES package solder balls
- Limited by PCB routing density
- o Limited by connector / module interconnect
- 256 channels at 50 Gbps is what we will focus on:
 - 50 Gbps PAM4 signaling has recently been defined
- 256 channels represents a doubling of today's current practice of 128 electrical channels

Electrical Channel Density Challenges

- Moving from 128 channels to 256 channels creates cross-talk concerns due to increased density
- Channel quality such as return loss, impedance, etc. due to routing implementations
- Reach or insertion loss is critical. For pluggable optic modules it is dominated by PCB and connector performance. In the case of direct attach copper cables, cable size (wire gauge) is a critical factor and this is determined by the module form factor cross sectional area
- Higher bandwidth-density creates thermal management challenges as next generation rates dissipate more power while density constraints are putting them closer and closer together

What's a Port? Key Equipment Considerations

- I/O ports are valued for their flexibility
- Consist of connectors and cages that accept pluggable modules
 - Passive direct attach copper cable
 - o Short reach optical modules
 - Medium reach optical modules
 - Long reach optical modules
- Allows end users to flexibly choose the appropriate reach and cost solution
- Provide good signal integrity
- Optimize thermal dissipation from the optics
- Different channel counts
- Port selection determines aggregate bandwidth and granular bandwidth

The Candidate Form Factors

- microQSFP
- OSFP
- QSFP-DD
- All three solutions can accommodate more than 256 channels in 1RU (up to 288 channels)
- Different implementations bring different strengths and weaknesses
- TE is a founding member of all three MSAs and offering product to market, i.e. first hand experience/data

microQSFP Form Factor

- A four channel port that fits 256 channels in 1RU with 64 microQSFP ports (up to 72 ports can fit but we will consider 64 ports since it equates to 256 channels)
- Able to support stacking of 3 ports to achieve density
- Achieves increase in density by going to 0.6mm contact pitch (vs. today's 0.8mm contact pitch)
- Uses a new module integrated thermal management solution to achieve higher power dissipation capability
- Can provide backward compatibility to SFP modules with the use of an adapter

OSFP Form Factor

- OSFP is an eight channel port that accommodates 256 channels in 1RU via 32 modules (up to 36 modules can fit in in 1RU but we will focus on 32 modules since it equates to 256 channels)
- It achieves density by using a 0.6mm connector contact pitch (vs. today's 0.8mm contact pitch)
- Like microQSFP, it implements a module integrated heat sink to achieve higher levels of power dissipation
- Can provide backward compatibility to QSFP modules with the use of an adapter

QSFP-DD Form Factor

- QSFP-DD is a new form factor port that enables backwards compatibility with existing QSFP modules
- Because of the backwards compatibility, it keeps the connector contacts on 0.8 mm pitch and adds additional rows of recessed contacts
- It uses the traditional riding heat sink thermal management methodology
- QSFP-DD allows an extra 15mm of module length outside the faceplate
- QSFP-DD can support 256 channels in 1RU with 32 modules in 1RU (36 modules can be supported but we will focus on 32 modules since this equates to 256 channels)

Switch Density Comparison

- All three form factors can more than meet the 256 electrical channel objective
- 288 electrical channels shown in the image

Switch I/O Density Comparison

QSFP-DD: 36 port

Differences in Connector Design to Achieve Density

Cross section views of connectors

- microQSFP and OSFP achieve density by reducing connector contact pitch from 0.8 to 0.6mm
- QSFP-DD achieves density by adding additional recessed rows of contacts on 0.8mm pitch
- The additional rows of contacts on QSFP-DD have more impact on connector cross talk than the tighter pitch on microQSFP and OSFP

Cage front

views

Front views not to scale with cross-section views

Signal Integrity - Simulation

(c)

ICN FEXT (mV)	ICN NEXT (mV)	ICN Total (mV)
4.2	1.5	4.4
0.989	0.355	1.049
1.629	0.251	1.648
2.686	0.517	2.736
	ICN FEXT (mV) 4.2 0.989 1.629 2.686	ICN FEXT (mV) ICN NEXT (mV) 4.2 1.5 0.989 0.355 1.629 0.251 2.686 0.517

22 24 26

Victim and Aggressors for simulated cross-talk

38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
G	Tx1-	Tx1+	G	Tx3-	Tx3+	G	SB	SB	SB	SB	SB	G	Rx4+	Rx4-	G	Rx2+	Rx2-	G
G	Tx2-	Tx2+	G	Tx4-	Tx4+	G	SB	SB	SB	SB	SB	G	Rx3+	Rx3-	G	Rx1+	Rx1-	G
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
G	Tx1-	Tx1+	G	Tx3-	Tx3+	G	SB	SB	SB	SB	SB	G	Rx4+	Rx4-	G	RxZ+	Rx2-	G
G	Tx5-	Tx5+	G	Tx7-	Tx7+	G	SB	SB	SB	SB	SB	G	Rx8+	Rx8-	G	Rx6+	Rx6-	G
76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
						-						-						
39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
G	Tx6-	Tx6+	G	Tx8-	Tx8+	G	SB	SB	SB	SB	SB	G	Rx7+	Rx7-	G	Rx5+	Rx5-	G
G	Tx2-	Tx2+	G	Tx4-	Tx4+	G	SB	SB	SB	SB	SB	G	RX3+	Rx3-	G	Rx1+	Rx1-	G
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
							OS	SFP-	DD	Pine	out			-				

Signal Integrity- Measurement

(d)

Victim and Aggressors for measured cross-talk

60 G

1

59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31
Tx1+	Tx1-	G	Tx3+	Tx3-	G	Tx5+	TxS-	G	Tx7+	Tx7-	G	SB	SB	SB	SB	G	Rx8-	Rx8+	G	Rx6-	Rx6+	G	Rx4-	Rx4+	G	Rx2-	Rx2+	G
Tx2+	Tx2-	G	Tx4+	Tx4-	G	Tx6+	Tx6-	G	Tx8+	Tx8-	G	SB	SB	SB	58	G	Rx7-	Rxy+	G	RxS-	Rx5+	G	Rx3-	Rx3+	G	Rx1-	Rx1+	G
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
			5				÷		53 - 6			OS	FP I	Pino	ut													

38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
G	Tx1-	Tx1+	G	Tx3-	Tx3+	G	SB	SB	SB	SB	SB	G	Rx4+	Rx4-	G	Rx2+	Rx2-	G
G	Tx2-	Tx2+	G	Tx4-	Tx4+	G	SB	SB	SB	SB	SB	G	Rx3+	Rx3-	G	Rx1+	Rx1-	G
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

G	Tx2-	Tx2+	G	Tx4-	Tx4+	G	SB	SB	SB	SB	SB	G	Rx3+	Rx3-	G	Rx1+	Rx1-	G
G	Tx6-	Tx6+	G	Tx8-	Tx8+	G	SB	SB	SB	SB	SB	G	Rx7+	Rx7-	G	Rx5+	Rx5-	G
39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
G	Tx5-	Tx5+	G	Tx7-	Tx7+	G	SB	SB	SB	SB	SB	G	Rx8+	Rx8-	G	Rx6+	Rx6-	G
G	Tx1-	Tx1+	G	Tx3-	Tx3+	G	SB	SB	SB	SB	SB	G	Rx4+	Rx4-	G	Rx2+	Rx2-	G
38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20

QSFP-DD Pinout

16

10 12 1.4 freq, GHz 18 20 22 24 26

PCB Implications

- The microQSFP and OSFP two-row connectors are easier to route both at the host board and at the module card edge PCB
- The QSFP-DD four-row connector adds complexity to both the host and the module PCB which impact cost and signal integrity
- The electrical effects of these routing differences are included in the measured data

microQSFP host footprint

OSFP host footprint

QSFP-DD host footprint

microQSFP card edge PCB

OSFP card edge PCB

QSFP-DD card edge PCB

Direct Attach Cable Considerations

 Industry standards typically specify minimum reach based on 26AWG cable

OSFP and microQSFP cable assemblies have been delivered with 26 AWG cable

 microQSFP and OSFP will always have a reach advantage due to internal packaging volume QSFP-DD with 26 AWG cable has challenges with fitting into the exposed area of the backshell as well as the reduced height section of the module

Thermal Management Factors

- Pluggable I/O's concentrate the heat dissipation of the optical conversion at the faceplate of the equipment where the airflow for cooling the full equipment originates
- With 400 Gbps, optics modules are expected to be as high as 15W vs. 5W at 100 Gbps!
- Ports need the lowest possible thermal resistance with the best possible volume of air flow
- Significant air needs to be focused on the modules, otherwise the thermal management of the modules degrades

QSFP example

Airflow Trade-Offs

Airflow Perforation Comparison

Max air volume condition

- Desire to maximize perforation area for equipment cooling
- Excess perforations "starve" the port cooling, resulting in high module temperatures

29.00 41.00 \bigcirc 31.00 \bigcirc ידראמאלים עדידיאמאמלי עדידיאמאמלי איזידיאמאלירידע אמאאלידיע אואאיידיע אואאאיידיע אואאיידיע אואאאיידיע 39.00 ຄື ມີມັນທີ່ເຫັດ ມີມີມັນທີ່ເຫັດ ມີມີມັນທີ່ເຫັດ ມີມີມັນທີ່ເຫັດ ມີມີມີມີທີ່ເຫັດ ມີມີມີມີທີ່ເຫັດ ມີມີມີມີທີ່ເຫັດ ມີ --- 17.96 ---9.00 - 29.00 daletala <u>Saleta</u>t 00000,0000 doçok doçek aboot boot naçat poşti חחח 50,00,00,00 10,00**0**0,00 15. 50**1**65. 5 -----<u>50,0000,0</u> 39,00 11.85 - ----

---- 24.00 ----

Switch I/O	I/O Port Qty	Available Faceplate Area	Perf Area in Faceplate	Perf Area in Cage	Total Perf Area	Percentage Perf
QSFP-DD	32		6,266.0	0.0	6,266.0	35.6%
OSFP	32	17,621.8	1,400.9	2,952.0	4,352.9	24.7%
microQSFP	64		2,133.0	3,374.9	5 <i>,</i> 507.9	31.3%

Airflow Trade-Offs, continued

- Restricting airflow to cool the potentially 15W modules
- Ports that allow airflow the significant
 benefit to also cooling the equipment

Airflow Perforation Comparison

Optimized module cooling condition

Switch I/O	I/O Port Qty	Available Faceplate Area	Perf Area in Faceplate	Perf Area in Cage	Total Perf Area	Percentage Perf
QSFP-DD	32		2,608.0	0.0	2,608.0	14.8%
OSFP	32	17,621.8	0.0	2,952.0	2,952.0	16.8%
microQSFP	64		0.0	3,374.9	3,374.9	19.2%

Thermal Mgmt – Airflow and Thermal Resistance

Riding Heat Sink Integrated Heat Sink

Cross section views:

Riding heat sink module vs. Integrated heat sink module

Thermal Management – Comparative Simulation

microQSFP 3-High 72 ports

=TE

=TE

=TE

Comparative side by side by side simulations:

- Same 1RU enclosure
- Same fans .
- Face plate perforations are optimized for each form factor
- Monitoring module hot spot at • 70°C over range of module powers and airflows

Results for total equipment IO power and per electrical channel power

Thermal Management - Measurements

microQSFP: 1.9W per channel (7.5W for 4 channel module) OSFP: 1.9W per channel (15W for 8 channel module)

QSFP-DD: 1.5W per channel (12W for 8 channel module)

Sum	mary				
	Signal Integrity	Thermal mgmt	Larger Wire AWG	Channel Density	Backwards Compatibility
microQSFP	'		'	'	
Result	Modeled ICN of 1.6mV	1.9W per channel, 7.5W per module	26AWG fits	288 channels	SFP with adapter
OSFP					
Result	Modeled ICN of 1.0mV	1.9W per channel, 15W per module	26AWG fits	288 channels	QSFP with adapter
QSFP-DD					
Result	Modeled ICN of 2.7mV	1.5W per channel, 12W per module	26AWG is difficult	288 channels	Directly accepts legacy QSFP

TE Connectivity Confidential & Proprietary. Do not reproduce or distribute.

Conclusions

- All three candidates solutions have been shown to be capable of enabling the new 400 Gbps generation of I/O, but with trade-offs
- Backwards compatibility is an important consideration for equipment, but at what cost (margin)?
 - Thermal limitations
 - Use of retimers to extend channels
 - Higher performing fans
 - o Etc.
- Adapters (to enable backwards compatibility) are an extra part, but only burden the port for legacy cases, preserve margin for new cases

What equipment performance attributes are most important to your customer?

Thank you!

QUESTIONS?

TE Connectivity Confidential & Proprietary. Do not reproduce or distribute.