

89BSD CALCULATION METHOD

APPLICATION NOTE

FUNCTIONAL DESCRIPTION

GENERAL

The 89BSD consists of a piezoresistive sensor and a sensor interface IC. The main function of the sensor interface IC is to convert the uncompensated analogue output voltage from the piezoresistive pressure sensor to a 24-bit digital value, as well as providing a 24-bit digital value for the temperature of the sensor.

FACTORY CALIBRATION

Every module is individually factory calibrated at seven points of various temperature and pressures. As a result, 10 coefficients necessary to compensate for process variations and temperature variations are calculated and stored in the 128-bit PROM of each module. These bits partitioned into 7 pressure coefficients (C0 to C6) and 3 temperature (A0 to A2) which must be read by the microcontroller software and used in the program converting D1 and D2 into compensated pressure and temperature values.

I²C mode

The external microcontroller clocks in the data through the input SCLK (Serial Clock) and SDA (Serial Data). The sensor responds on the same pin SDA which is bidirectional for the I²C bus interface. So this interface type uses only 2 signal lines and does not require a chip select, which can be favorable to reduce board space. In I²C-Mode the complement of the pin CSB (Chip Select) represents the LSB of the I²C address.

	Address (7 bits)
CSB PIN	0x77 (1110111 b)

Commands

The 89BSD has only five basic commands:

- 1. Reset
- 2. Read PROM (128 bit of calibration words)
- 3. D1 conversion
- 4. D2 conversion
- 5. Read ADC result (24 bit pressure / temperature)

Size of each command is 1 byte (8 bits) as described in the table below. After ADC read commands the device will return 24 bit result and after the PROM read 16bit result. The address of the PROM is embedded inside of the PROM read command using the a2, a1 and a0 bits.

89BSD CALCULATION METHOD

APPLICATION NOTE

	Comma	and byte							hex value
Bit number	0	1	2	3	4	5	6	7	
Bit name	PRM	COV	-	Туре	Ad2/O	Ad1/O	Ad0/O	Stop	
					s2	s1	s0		
Command									
Reset	0	0	0	1	1	1	1	0	0x1E
Convert D1 (OSR=256)	0	1	0	0	0	0	0	0	0x40
Convert D1 (OSR=512)	0	1	0	0	0	0	1	0	0x42
Convert D1 (OSR=1024)	0	1	0	0	0	1	0	0	0x44
Convert D1 (OSR=2048)	0	1	0	0	0	1	1	0	0x46
Convert D1 (OSR=4096)	0	1	0	0	1	0	0	0	0x48
Convert D2 (OSR=256)	0	1	0	1	0	0	0	0	0x50
Convert D2 (OSR=512)	0	1	0	1	0	0	1	0	0x52
Convert D2 (OSR=1024)	0	1	0	1	0	1	0	0	0x54
Convert D2 (OSR=2048)	0	1	0	1	0	1	1	0	0x56
Convert D2 (OSR=4096)	0	1	0	1	1	0	0	0	0x58
ADC Read	0	0	0	0	0	0	0	0	0x00
PROM Read	1	0	1	0	Ad2	Ad1	Ad0	0	0xA0 to
									0xAE

Figure 1: Command structure

CONVERSION SEQUENCE

The conversion command is used to initiate uncompensated pressure (D1) or uncompensated temperature (D2) conversion. The chip select can be disabled during this time to communicate with other devices.

After the conversion, using ADC read command the result is clocked out with the MSB first. If the conversion is not executed before the ADC read command, or the ADC read command is repeated, it will give 0 as the output result. If the ADC read command is sent during conversion the result will be 0, the conversion will not stop and the final result will be wrong. Conversion sequence sent during the already started conversion process will yield incorrect result as well.

PROM READ SEQUENCE

The read command for PROM shall be executed once after reset by the user to read the content of the calibration PROM and to calculate the calibration coefficients. There are in total 8 addresses resulting in a total memory of 128 bit. Address 0 contains factory data and the setup, addresses 1-6 calibration coefficients and address 7 contains the serial code and CRC. The command sequence is 8 bits long with a 16 bit result which is clocked with the MSB first.

Figure 4: PROM Read sequence, address = 011 (Coefficient 3).

I2C INTERFACE

COMMANDS

Each I²C communication message starts with the start condition and it is ended with the stop condition. The 89BSD address is 111011Cx, where C is the complementary value of the pin CSB.

Reset sequence

The reset can be sent at any time. In the event that there is not a successful power on reset this may be caused by the SDA being blocked by the module in the acknowledge state. The only way to get the 89BSD to function is to send several SCLKs followed by a reset sequence or to repeat power on reset.

Conversion sequence

A conversion can be started by sending the command to 89BSD. When command is sent to the system it stays busy until conversion is done. When conversion is finished the data can be accessed by sending a Read command, when an acknowledge appears from the 89BSD 24 SCLK cycles may be sent to receive all result bits. Every 8 bit the system waits for an acknowledge signal.

89BSD CALCULATION METHOD APPLICATION NOTE

1 1 1 Device S Device	0 1 1 CSB 0 0 1 0	0 0 0 A P	
From Mas	ter S = Start Condition /e P = Stop Condition	W = Write R = Read	A = Acknowledge N = Not Acknowledge
Figure 6: I ² C C	command to initiate a pressu	re conversio	n (OSR=4096, type=D1)
1 1 1 Device S Device	0 1 1 CSB 0	0 0 0 0	
From Mas	ster S = Start Condition ve P = Stop Condition	W = Write R = Read	A = Acknowledge N = Not Acknowledge
	Figure 7: I ² C ADC re	ad sequence	•
1 1 1 0 1 1 CSB 1 Device Address	1 0 X X X X X X X X 0 X data	XXXXXX data	X 0 X X X X X X X X X 1 data
S Device Address F	R A Data 23-16 A	Data 15 - 8	A Data 7 - 0 N P
From Master S = S From Slave P = S	Start ConditionW = WriteStop ConditionR = Read	A = Adknowled N = Not Adkno	lge wledge
Figu	re 8: I ² C pressure response (D1) on 24 bit	s from 89BSD

PROM Read Sequence

The PROM Read command consists of two parts. First command sets up the system into PROM read mode. The second part gets the data from the system.

1 1 1 0 1 1 Device Address	CSB 0 0	1 0 1 0 0 1 command	1 0 0	
S Device Address	WA	cmd byte	A P	
From Master From Slave	S = Start (P = Stop (Condition Condition	W = Write R = Read	A = Acknowledge N = Not Acknowledge

Figure 9: I²C Command to read memory address= 011 (Coefficient 3)

1 1 1 0 1	1 CSB 1	0	ХХ	Х	ХХ	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	0
Device Addr	ess				data								da	ita				
S Device Addr	ess R	Α	Me	emo	ry bit	15	- 8		Α		М	em	ory	bit	7 -	0		NP
From Master From Slave	S = St P = St	art (op (Condit Condit	ion ion			W R=	= V = R	Vrit ead	e		A = N =	= A = N	ckn lot /	owl Ack	led <u>s</u> nov	ge vled	lage

Figure 10: I²C answer from 89BSD

CYCLIC REDUNDANCY CHECK (CRC)

89BSD contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented to check the data validity in memory. The application note AN520 describes in detail CRC-4 code used.

PRESSURE AND TEMPERATURE CALCULATION

C4.		
	-111	

Maximum values for calculation results: P_{MIN}= 0 barA, P_{MAX}=Product pressure (e.g. for 89BSD-012BA, P_{MAX}=12barA) $T_{MIN} = -20^{\circ}C T_{MAX} = 85^{\circ}C$

Variable	Description Equation	Recommended	Size ^[1]	Va	lue	Example /
variable	Description Equation	Variable Type	[Bit]	Min	Max	Typical
C0	Bridge Offset	Signed int 16	14	-8192	8192	-5242
C1	Gain	Signed int 16	14	-8192	8192	4172
C2	Non-linearity 2 nd order	Signed int 16	10	-512	512	80
C3	Temperature coefficient, Bridge offset 1st order	Signed int 16	10	-512	512	-77
C4	Temperature coefficient, Bridge offset 2 nd order	Signed int 16	10	-512	512	67
C5	Temperature coefficient, Gain 1 st order	Signed int 16	10	-512	512	-210
C6	Temperature coefficient, Gain 2 nd order	Signed int 16	10	-512	512	222
A0	Temperature coefficient 1 of the temperature	Signed int 16	10	-512	512	-276
A1	Temperature coefficient 2 of the temperature	Signed int 16	10	-512	512	360
A2	Temperature coefficient 3 of the temperature	Signed int 16	10	-512	512	-190

-	Rea	ad digital pressure and tempe	erature	data		
D1	Digital pressure value	Unsigned long	24	0	16777216	8128896
D2	Digital temperature value	Unsigned long	24	0	16777216	2865097

	Calcu	♦ ulate temperature	9		
TEMP	Actual temperature (-2085°C with 0.01°C resolution) TEMP=A0/3+A1*2*D2/2 ²⁴ +A2*2*(D2/2 ²⁴) ²	Double	32		19.87°C

Ť

Note: Earlier iterations of this product used formula TEMP = A0/5+A1...

Calculate temperature compensated pressure										
Y	$\begin{array}{l} Y{=}(D1{+}C0^{*}2^{Q0}{+}C3^{*}2^{Q3}{*}D2/2^{24}{+}C4^{*}2^{Q4}{*}(D2/2^{24})^{2})\\ /(C1^{*}2^{Q1}{+}C5^{*}2^{Q5}{*}D2/2^{24}{+}C6^{*}2^{Q6}{*}(D2/2^{24})^{2}) \end{array}$	Double	32	0.7673						
Ρ	P=Y*(1-C2*2 ^{Q2} /2 ²⁴) + C2*2 ^{Q2} /2 ²⁴ *Y ²	Double	32	0.7669						
Pressure	Pressure= (P-0.1)/0.8*(P _{MAX} -P _{MIN}) + P _{MIN}	Double	32	10.003						
		to and tomporature								

Figure 11: Flow chart for pressure and temperature reading and software compensation.

MEMORY MAPPING^[2]

					Mem	lory m	nappir	ng								
															1	
Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	C0 13	C0 12	C0 11	CO 10	C0 ₀₉	C0 ₀₈	C0 ₀₇	C006	C005	C0 04	C0 ₀₃	C0 ₀₂	C0 01	C000	C1 ₁₃	C1 ₁₂
2	C1 ₁₁	C1 ₁₀	C1 ₀₉	C1 ₀₈	C107	C106	C105	C104	C1 ₀₃	C102	C1 ₀₁	C100	C2 ₀₉	C2 ₀₈	C2 ₀₇	C2 ₀₆
3	C205	C2 ₀₄	C2 ₀₃	C2 ₀₂	C2 ₀₁	C200	C309	C308	C307	C306	C305	C3 ₀₄	C3 ₀₃	C302	C3 ₀₁	C300
4	C4 ₀₉	C4 ₀₈	C407	C406	C405	C4 ₀₄	C4 ₀₃	C4 ₀₂	C4 ₀₁	C400	C5 ₀₉	C5 ₀₈	C507	C506	C505	C504
5	C5 ₀₃	C502	C501	C500	C609	C6 ₀₈	C607	C606	C605	C604	C6 ₀₃	C602	C601	C600	A0 ₀₉	A0 ₀₈
6	A0 07	A0 ₀₆	A0 ₀₅	A0 ₀₄	A0 ₀₃	A0 ₀₂	A0 ₀₁	A0 ₀₀	A1 ₀₉	A1 ₀₈	A107	A1 ₀₆	A105	A1 ₀₄	A1 ₀₃	A1 ₀₂
7	A1 ₀₁	A100	A2 ₀₉	A2 ₀₈	A2 ₀₇	A2 ₀₆	A2 ₀₅	A2 ₀₄	A2 ₀₃	A2 ₀₂	A2 ₀₁	A200		CF	SC	

Q FACTOR

Figure 12: Memory mapping.

oulation
culation
9
11
9
15
15
16
16

Notes

[1] Maximal size of intermediate result during evaluation of variable [2] All coefficients are 2's complement format

APPLICATION CIRCUIT

The 89BSD is a circuit that is to be used in conjunction with a microcontroller and a 3V DC supply.

I²C protocol communication

Figure 13: Typical application circuit for I²C protocol communication

NORTH AMERICA

Measurement Specialties, a TE Connectivity Company 45738 Northport Loop West Fremont, CA 94538 Tel: 1-800-767-1888 Fax: 1-510-498-1578 Sales: customercare.frmt@te.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company 26 Rue des Dames 78340 Les Clayes-sous-Bois, France Tel: +33 (0) 130 79 33 00 Fax: +33 (0) 134 81 03 59 Sales: customercare.lcsb@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China Tel: +86 755 3330 5088 Fax: +86 755 3330 5099 Sales: customercare.lcsb@te.com

te.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties (MEAS), American Sensor Technologies (AST), TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

