

RCPS-150-02 Revision E 30-Dec-15

Raychem Devices

NOTE: UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS. INCHES DIMENSIONS ARE IN [.XXX] BRACKETS

1.0 Scope

This standard contains the procedures for making environment resistant 1 to 1 inline splices in shielded and jacketed cables listed in Paragraph 5.0 using TE Connectivity D-150 Series shielded cable splice kits.

2.0 References

TE Connectivity Customer Drawing (CD) Series D-150.

See Paragraph 5.0 for applicable TE Connectivity parts.

3.0 Application Equipment

- 3.1 Wire Handling Tools
 - a) Wire stripper for primaries.
 - b) Wire stripper for cable jacket.
 - c) Small sharp scissors or diagonal cutters for braid.
 - d) Ruler readable to 0.50 (0.025).
 - e) TE Connectivity AD-1377 Crimp Tool (calibrated).

3.2 Heating Tools

Use one of the following or TE Connectivity approved alternative.

- a) CV-5000 Thermogun Model 500B with TG-135 reflector, temperature setting 750°F-850°F.
- b) CV-5300 Mini-gun 1 with MG-1 reflector, temperature setting 750°F-850°F
- c) Steinel HL1910E or HL2010E with PR-25 reflector, temperature setting 750°F-850°F.

4.0 General Information

4.1 Splice Kit Description

The TE Connectivity D-150 Series shielded cable splice kits consists of:

- Soldershield braid splice for splicing and encapsulating the cable shields.
- b) Mini-seal crimp barrels for splicing the primary conductors.
- c) Mini-seal crimp sealing sleeves for encapsulating the primary conductor splices.

RCPS-150-02 Revision E 30-Dec-15

Raychem Devices

5.0 Installation Procedures

Use procedure paragraph applicable to the cable configuration being spliced.

Cable Primaries			G 11 TZ	A 1' 11
No.	AWG Range [CMA Range]	Plating	Splice Kit Number	Applicable Paragraph
1	26 to 20	Tin/Silver	D-150-0168	5.1
	[304-1510]	Nickel	D-150-0228	5.1
1	20 to 16	Tin/Silver	D-150-0169	5.1
	[779-2680]	Nickel	D-150-0229	5.1
1	16 to 12	Tin/Silver	D-150-0170	5.1
	[1900-6755]	Nickel	D-150-0230	5.1
2	26 to 20	Tin/Silver	D-150-0174	5.2
	[304-1510]	Nickel	D-150-0231	5.2
2	20 to 16	Tin/Silver	D-150-0175	5.2
	[779-2680]	Nickel	D-150-0232	5.2
2	16 to 12	Tin/Silver	D-150-0176	5.2
	[1900-6755]	Nickel	D-150-0233	5.2
2	16 to 12	Tin/Silver	D-150-0177	5.2
	[1900-6755]	Nickel	D-150-0234	5.2
3	26 to 20	Tin/Silver	D-150-0178	5.3
3	[304-1510]	Nickel	D-150-0235	5.3
3	26 to 20	Tin/Silver	D-150-0179	5.3
	[304-1510]	Nickel	D-150-0236	5.3
3	20 to 16	Tin/Silver	D-150-0180	5.3
	[779-2680]	Nickel	D-150-0237	5.3
3	16 to 12	Tin/Silver	D-150-0181	5.3
	[1900-6755]	Nickel	D-150-0238	5.3
4	26 to 20	Tin/Silver	D-150-0178	5.3
	[304-1510]	Nickel	D-150-0235	5.3
4	26 to 20	Tin/Silver	D-150-0179	5.3
	[304-1510]	Nickel	D-150-0236	5.3
4	20 to 16	Tin/Silver	D-150-0180	5.3
	[779-2680]	Nickel	D-150-0237	5.3
4	16 to 12	Tin/Silver	D-150-0181	5.3
	[1900-6755]	Nickel	D-150-0238	5.3

RCPS-150-02 Revision E 30-Dec-15

Raychem Devices

5.1 Single Conductor Shielded Cable

Applicable cable gauges and splice kit numbers:

26, 24, 22, 20 D-150-0168 or -0228 18, 16 D-150-0169 or -0229 14, 12 D-150-0170 or -0230

5.1.1 Cable Preparation

Tolerances: All lengths ± 0.50 (0.025)

a) Remove cable jacket and shield: 18.00 (0.700)

b) Strip primaries: 7.00 (0.275)

c) Remove cable jacket: 9.50 (0.375)

5.1.2 Assembly Procedure

- Place the shield splice sleeve (small end first) onto one of the cables.
- b) Primary Conductor Splice.
 - 1) Place the sealing sleeve onto one of the cables.
 - Crimp primaries into opposite ends of the crimp splice using a calibrated TE Connectivity AD-1377 crimp tool. Be sure matching primaries from each cable are in same sleeve.
 - 3) Center the sleeve over the splice.
 - 4) Apply heat to the center of the sleeve until it recovers, and then heat ends until sealing rings melt and flow along wires.
 - 5) Inspect per Paragraph 6.1.
- c) Shield Splice
 - 1) Center the shield splice sleeve over the splice and the exposed cable shields.
 - 2) Heat sleeve.
 - a) Heat center of sleeve until the solder melts and the shield and tube recover.
 - b) Move the heat toward one end of the shield slowly enough to keep the sleeve recovering as you move along.

RCPS-150-02 Revision E 30-Dec-15

Raychem Devices

- c) Apply heat for an additional 5 to 10 seconds to the final 12.5 mm (half-inch) of the sleeve shield to ensure sufficient heat transfer to the cable shield to make a good joint.
- Apply heat to end of sleeve until rings melt and flow along cable jacket.
- e) Repeat for other end of sleeve.
- 3) Inspect per Paragraph 6.2.

5.2 Two Conductor Shielded Cable

Applicable cable gauges and splice kit numbers:

26, 24, 22, 20	D-150-0174 or -0231
18, 16	D-150-0175 or -0232
14	D-150-0176 or -0233
12	D-150-0177 or -0234

5.2.1 Cable Preparation

Tolerances: All lengths ± 0.50 (0.025)

- a) Remove cable jacket and shield: 46.50 (1.825)
- b) Cut 1 primary on each cable: 17.00 (0.675) from cable jacket.

 Note: Short primaries on cable A must be left uncut on cable B.
- c) Strip primaries: 7.00 (0.275)
- d) Remove cable jacket: 9.50 (0.375)

5.2.2 Assembly Procedure

- Place the shield splice sleeve (small end first) onto one of the cables.
- b) Primary Conductor Splices.
 - 1) Place the sealing sleeve onto the longer lead of each cable.
 - 2) Crimp primaries into opposite ends of the crimp splice using a calibrated TE Connectivity AD-1377 crimp tool.
 - 3) Center the sleeves over the splices.
 - 4) Apply heat to the center of the sleeve until it recovers, and then heat ends until sealing rings melt and flow along wires.
 - 5) Inspect per Paragraph 6.1.

RCPS-150-02 Revision E 30-Dec-15

Raychem Devices

- c) Shield Splice
 - Center the shield splice sleeve over the splice and the exposed cable shields.
 - 2) Heat sleeve.
 - a) Heat center of sleeve until the solder melts and the shield and tube recover.
 - b) Move the heat toward one end of the shield slowly enough to keep the sleeve recovering as you move along.
 - Apply heat for an additional 5 to 10 seconds to the final 12.5 mm (half-inch) of the sleeve shield to ensure sufficient heat transfer to the cable shield to make a good joint.
 - d) Apply heat to end of sleeve until rings melt and flow along cable jacket.
 - e) Repeat for other end of sleeve.
 - 3) Inspect per Paragraph 6.2.
- 5.3 Three and Four Conductor Shielded Cable

Applicable cable gauges and splice kit numbers:

26, 24,	D-150-0178 or -0235
22, 20	D-150-0179 or -0236
16, 18	D-150-0180 or -0237
14. 12	D-150-0181 or -0238

5.3.1 Cable Preparation

Tolerances: All lengths ± 0.50 (0.025)

- a) Remove cable jacket and shield: 46.50 (1.825)
- b) Cut primaries: 3-conductor: 2 on cable A and 1 on cable B; 4conductor: 2 on both cables A and B: 17.00 (0.675) from cable iacket.

Note: Short primaries on cable A must be left uncut on cable B.

- c) Strip primaries: 7.00 (0.275)
- d) Remove cable jacket: 9.50 (0.375)

RCPS-150-02 Revision E 30-Dec-15

Raychem Devices

5.3.2 Assembly Procedure

- a) Place the shield splice sleeve (small end first) onto one of the cables.
- b) Primary Conductor Splices.
 - 1) Place the sealing sleeve onto the longer lead of each cable.
 - 2) Crimp primaries into opposite ends of the crimp splices using a calibrated TE Connectivity AD-1377 crimp tool.
 - 3) Center the sleeves over the splices.
 - 4) Apply heat to the center of the sleeve until it recovers, and then heat ends until sealing rings melt and flow along wires.
 - 5) Inspect per Paragraph 6.1.
- c) Shield Splice
 - Center the shield splice sleeve over the splice and the exposed cable shields.
 - 2) Heat sleeve.
 - a) Heat center of sleeve until the solder melts and the shield and tube recover.
 - b) Move the heat toward one end of the shield slowly enough to keep the sleeve recovering as you move along.
 - Apply heat for an additional 5 to 10 seconds to the final 12.5 mm (half-inch) of the sleeve shield to ensure sufficient heat transfer to the cable shield to make a good joint.
 - d) Apply heat to end of sleeve until rings melt and flow along cable jacket.
 - e) Repeat for other end of sleeve.
 - 3) Inspect per Paragraph 6.2.

6.0 Inspection

- 6.1 Mini-seal Splices
 - a) Conductors must be visible at point where they enter the crimp barrel.
 - b) Both indentations of a crimp must be on the crimp barrel.
 - c) Sealing sleeve inserts must have flowed along wire insulation.
 - d) Sleeve must not have discolored to the degree that the crimp barrel cannot be inspected.
 - e) Sleeve must not be cut or split.

RCPS-150-02 Revision E 30-Dec-15

Raychem Devices

6.2 Shield Splice

- a) Sleeve/shield must be recovered along its entire length.
- b) Sleeve must be recovered tightly around cable jacket.
- c) Sealing rings must have flowed along cable jacket.
- d) Sleeve must not have discolored to the degree that joint can not be inspected.
- e) Sleeve must not cut or split.
- f) Strands must not be poking through the sleeve.