

2018 DIESEL ECM CONNECTION SYSTEM MULTI-CAVITY TOOL PRODUCT VALIDATION REPORT

INCLUDES SECONDARY SECTION FOR QUALIFICATION OF GENERATION Y ISL CLEARANCE IMPROVEMENT AND LEVER IMPROVEMENT FOR CIRCUIT INSERTION CLEARANCE

REFERENCE SPECIFICATIONS: GMW3191 June 2012 GMW 3172 November 2012 Connector CTS, Revision 02, May 28, 2014 Directives from Gregory Fleck, GM Staff Project Engineer

502-32071

Revsion and Approval History

REL	REASON	DATE	APPROVAL SIGNITURE/DATE
Α	Initial Release	03/06/19	Atiq Islam 03/07/2019
В	Added test results data for ISL and Lever	03/22/19	
	Changes per agreed test plan 2018 Diesel ECM		
	Connection System Test Flow Lever_ISL 9-14-		
	18_Signed_AI.pdf		

TABLE OF CONTENTS

PURPOSE	III
APPLICABLE COMPONENTS PART NUMBER TABLE	IV
ENVIRONMENTAL – SEALING	1
SEQUENCE 1 GROUP 1 - GMW3191: ENVIRONMENTAL SEALING	1
SEQUENCE 1 GROUP 3 - GMW3191: ENVIRONMENTAL SEALING 3	3
CONNECTOR MECHANICAL TESTS	4
SEQUENCE 2 GROUP 1 - GMW3191: TERMINAL TO CONNECTOR ENGAGEMENT FORCE	4
SEQUENCE 2 GROUP 2 - GMW3191: CONNECTOR TO CONNECTOR ENGAGEMENT FORCE	6
SEQUENCE 2 GROUP 3 - GMW3191: CONNECTOR TO CONNECTOR DISENGAGEMENT FORCE	9
SEQUENCE 2 GROUP 4 - GMW3191: CONNECTOR MECHANICAL TESTS	
SEQUENCE 2 GROUP 5 - ADDITIONAL TEST, PRE-STAGE RETENTION TEST	14
CONNECTOR ELECTRICAL TESTS	
SEQUENCE 3 GROUP 1 - GMW3191: CONNECTOR ELECTRICAL 1	
SEQUENCE 3 GROUP 2 - GMW3191: CONNECTOR ELECTRICAL 2	
CONNECTOR MECHANICAL TESTS – TERMINAL EXTRACTION	19
SEQUENCE 4 GROUP 1 - GMW3191: TERMINAL FROM CONNECTOR EXTRACTION – PRIMARY ONLY	19
SEQUENCE 4 GROUP 2 - GMW3191: TERMINAL FROM CONNECTOR EXTRACTION – PRIMARY AND SECONDARY	20
SEQUENCE 4 GROUP 3 - GMW3191: TERMINAL FROM CONNECTOR EXTRACTION	21
SEQUENCE 4 GROUP 4 - GMW3191: TERMINAL FROM CONNECTOR EXTRACTION	22
SEQUENCE 4 GROUP 5 - GMW3191: TERMINAL FROM CONNECTOR EXTRACTION	23
GMW3172 TESTING	24
SEQUENCE 5 GROUP 1 - GMW3172: PRESSURE DECAY TEST& ELECTRICAL – LEG 1	24
SEQUENCE 5 GROUP 2 - GMW3172: PRESSURE DECAY TEST & ELECTRICAL – LEG 2	29
SEQUENCE 5 GROUP 3 - GMW3172: PRESSURE DECAY TEST & ELECTRICAL – LEG 3	
SEQUENCE 5 GROUP 4 - GMW3172: SALT SPRAY/SUBMERSION – LEG 4	
ISL CHANGE SUB-SET RETEST - GMW3191: GENERATION Y TERMINALS	41
TERMINAL ENGAGEMENT, TERMINAL EXTRACTION, AND TERMINAL POSITION ASSURANCE	41
LEVER CHANGE TO REV 2 SUB-SET RETEST	43
CONNECTOR TO CONNECTOR TESTS, MECHANICAL ASSIST INTEGRITY, USCAR2 DROP, GMPT HANGING TEST	43
APPENDIX	
A. PTC Power Circuit Configuration	47
B. CIRCUIT LOADING CONFIGURATIONS	48
	49

PURPOSE

The purpose of this Product Validation Report is to document performance of TE Connectivity's multi-cavity 90P and 112P Female Connector Assemblies (production-tool versions) for the 2018 Diesel ECM Connection System. The governing documents from which performance criteria are derived are: (1) GMW3191 June 2012, (2) GMW 3172 November 2012, (3) Connector CTS, Revision 02, May 28, 2014 and (4) Directives from Gregory Fleck, GM Staff Project Engineer. Prior to initiating testing, agreed upon test sequences were documented and approved via test flow matrix:

multi_cavity_pv_ECM NA_EMEA Test Matirx_Sealing_Pressure_Decay_Continuity_ Dry_Circuit_signed_Islam_fleck.pdf, approved on 6-11-2018.

There are two sections to this performance report. The first section includes qualification results of the system to the entirety of the flows as described by the governing documents listed above, and the performance summarized in the second section, represents a mechanical subset validation of ISL and lever improvements. The ISL improvements are intended to address clearance concerns identified in pre-production builds; these ISL improvements are solely related to the Generation Y contact cavity. The lever improvements are to allow more ergo clearance for terminal insertion. Prior to initiating testing, agreed upon test sequences were documented and approved via test flow matrix:

2018 Diesel ECM Connection System Test Flow Lever_ISL 9-14-18_Signed_AI.pdf

Full qualification results are documented on pages 1 -40. The mechanical subset qualification for the Generation Y ISL clearance and lever change begins on page 41.

Applicable Components Part Number Table

APPLICABLE COMPONENTS TABLE					
TE P/N	GM P/N	Description	MFG		
2310326-2	12698061	Wire Harness Connector Assy, 112CKT	TE		
2310318-1	12698059	Wire Harness Connector Assy, 90CKT	TE		
2310337-1	12698063	Dress Cover Assy, 90CKT and 112CKT	TE		
2298920-1	N/A	Controller Connector Assy, 112CKT	TE- EMEA		
2298911-1	N/A	Controller Connector Assy, 90CKT	TE- EMEA		
1-2138699-4	12679508	0.64mm G-Y Receptacle Terminal, 0.35mm ² wire size	TE		
1-2138699-1	12679509	0.64mm G-Y Receptacle Terminal, 0.5mm ² wire size	TE		
1-2138699-2	12679510	0.64mm G-Y Receptacle Terminal, 0.75mm ² wire size	TE		
1670144-3	12675510	1.2 MCON Receptacle Terminal, 0.75mm ² wire size	TE		
1452503-3	12675511	1.2 MCON Receptacle Terminal, 1.5mm ² wire size	TE		
1-968855-3	12675513	2.8mm MCP Receptacle Terminal, 0.5mm ² wire size	TE		
1-968857-3	12675514	 2.8mm MCP Receptacle Terminal, 2.5mm² wire size 	TE		
1241412-3	12675515	6.3mm Receptacle Terminal, 0.5mm ² wire size	TE		
1-1241418-3	12675516	6.3mm Receptacle Terminal, 6.0mm ² wire size	TE		
828904-1	12675517	Single Wire Seal	TE		
828905-1	12675518	Single Wire Seal	TE		
2177018-1	12675519	Single Wire Seal	TE		
1719043-1	12675520	Single Wire Seal	TE		

Environmental – Sealing

Sequence 1 Group 1 - GMW3191: Environmental Sealing

Description of Testing:

During Sequence 1, Group 1, the product under test was subjected to the sequence of environments as defined by GMW3191. Applied environments were: Thermal Aging, Thermal Shock, Humid Heat Cyclic, High Pressure Spray and Submersion.

Environmental Classification:

Applied Temperature = -40° C to 125° C

Description of Samples Tested:

10x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 3x Fully Loaded Max Wire 4x Fully Loaded Min Wire 3x Fully Loaded Mixture of Min and Max
10x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 3x Fully Loaded Max Wire 4x Fully Loaded Min Wire 3x Fully Loaded Min Wire 3x Fully Loaded Min Wire

Acceptance Criteria:

Pre-Environment Pressure =	7 PSI Min
Pre-Environment Vacuum =	7 PSI Min
Post-Environment Pressure =	4 PSI Min
Post-Environment Vacuum =	4 PSI Min
Isolation Resistance =	100 Mohms at 500VDC
Post-Sequence Dielectric Strength=	No Breakdown or Flashover

Results Summary:

*Note: All female connectors (90P and 112P) passed +/- 7 PSI testing prior to start of testing; all connectors also passed +/- 4 PSI after each environment. The values documented in the data below is simply Isolation Resistance.

EV	EWA90649, Sequence 1 - Group 1, 90P											
	Resistance at 500 Vdc (GΩ)											
Sample		After	After	After	After Humid	After Mater	Cycle 1	Cycle 2	Cycle 3	Cycle 4		After
Number	Initial	Pressure/Vacuum	Thermal	Thermal	Alter Humid	Arter water	Water	Water	Water	Water	Cycle 5 Water	Pressure/Vacuum
		+/- 7 psig	Aging	Shock	Heat Cyclic	spray	Submersion	Submersion	Submersion	Submersion	Submersion	(after Submersion)
Min-1	34.78	>60	>60	25.32	16.47	4.38	>60	>60	>60	47.62	>60	>60
Min-2	>60	>60	>60	46.11	17.89	6.67	>60	>60	>60	>60	>60	>60
Min-3	>60	34.78	>60	27.64	18	2.7	>60	>60	>60	>60	>60	>60
Min3-1	>60	>60	>60	23.95	15.71	30.05	>60	>60	>60	>60	>60	>60
Mid-1	>60	>60	>60	>60	16.21	4.83	>60	>60	>60	>60	>60	>60
Mid-2	>60	>60	25.37	50.75	17.2	28.66	>60	>60	>60	>60	>60	>60
Mid-3	>60	>60	>60	30.59	17.49	26.69	>60	>60	>60	>60	>60	>60
Max-1	20.78	>60	>60	28.34	18.43	42.41	>60	>60	>60	>60	>60	>60
Max-2	35.18	55.28	>60	20.1	17.79	14.6	>60	>60	>60	>60	>60	>60
Max-3	30.35	>60	>60	19.23	19.84	5.53	>60	>60	>60	>60	>60	>60

EWA	090650P, s	Sequence 1 - Group	1, 112P									
	Resistance at 500 Vdc (GΩ)											
Sample		After	After	After	After Humid	After Water	Cycle 1	Cycle 2	Cycle 3	Cycle 4		After
Number	Initial	Pressure/Vacuum	Thermal	Thermal	Heat Oralia	Corou	Water	Water	Water	Water	Cycle 5 Water	Pressure/Vacuum
		+/- 7 psig	Aging	Shock	Heat Cyclic	spray	Submersion	Submersion	Submersion	Submersion	Submersion	(after Submersion)
Min-1	34.78	>60	48.37	>60	14.67	>60	>60	>60	>60	47.62	>60	>60
Min-2	39.69	>60	>60	56.28	18	36.85	>60	>60	>60	>60	>60	>60
Min-3	34.4	>60	>60	30.96	11.38	9.52	25.69	>60	>60	>60	>60	>60
Min-4	>60	>60	28.66	>60	11.82	43.6	>60	>60	31.27	>60	>60	>60
Mid-1	54.31	36	>60	>60	16.47	55.28	30.35	>60	>60	>60	>60	>60
Mid-2	31.91	>60	>60	44.22	15.32	30.96	>60	48.37	>60	>60	>60	>60
Mid-3	43.6	>60	>60	>60	16.21	36.85	>60	>60	>60	>60	>60	>60
Max-1	>60	>60	>60	>60	14.53	30.96	>60	>60	>60	>60	>60	>60
Max-2	>60	>60	>60	>60	16.55	14.1	>60	>60	>60	>60	>60	>60
Max-3	>60	>60	>60	44.86	17.2	5.51	>60	>60	>60	>60	>60	>60

Results Comments:

Sequence 1 Group 3 - GMW3191: Environmental Sealing 3

Description of Testing:

During Sequence 1, Group 3, the product under test was subjected to the fluids as specified in GMW3191. General fluid descriptions to which test parts were subjected were: Brake Fluid, Motor Oil, Gasoline, Engine Coolant, Automatic Transmission Fluid, Windshield Washer Solvent, Power Steering Fluid, Diesel Fluid, E85 Ethanol Fluid.

Environmental Classification:

Applied Temperature = As specified in GMW3191, Table 24

Description of Samples Tested:

18x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 2x per Applied Fluid

18x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 2x per Applied Fluid

Acceptance Criteria:

There shall be no visible degradation, swelling, cracking, or loss of mechanical function evident on any test sample when examined under $10 \times$ to $40 \times$ magnification.

Results Comments:

Connector Mechanical Tests

Sequence 2 Group 1 - GMW3191: Terminal to Connector Engagement Force

Description of Testing:

During Sequence 2, Group 1, terminal to connector insertion forces were measured. Prior to testing, the conditioning sequence per GMW3191, section 3.3 was applied to plastic components.

Description of Samples Tested:

90P ECM Female Connector Assembly Generation Y 0.64mm Female Receptacle MCP 2.8mm Female Receptacle
112P ECM Female Connector Assembly Generation Y 0.64mm Female Receptacle MCON 1.2mm Female Receptacle

Acceptance Criteria:

Generation Y 0.64mm Maximum Insertion =	15N Min
MCON 1.2mm Maximum Insertion =	15N Min (<1.0mm ² wire)
	30N Max (>1.0mm ² wire)
MCP 2.8mm Maximum Insertion =	15N Min (<1.0mm ² wire)
	30N Max (>1.0mm ² wire)
MCP 6.3mm Maximum Insertion =	$15N \operatorname{Min} (< 1.0 \mathrm{mm}^2 \mathrm{wire})$
	30N Max (>1.0mm ² wire)
MCP 2.8mm Maximum Insertion = MCP 6.3mm Maximum Insertion =	15N Min (<1.0mm ² wire 30N Max (>1.0mm ² wire 30N Max (>1.0mm ² wire 15N Min (<1.0mm ² wire 30N Max (>1.0mm ² wire

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P	
	Wire size < 1.0 mm², Force < 15N		[-]	[-]	
	0.64mm(0.75mm ²)		MIN=4.5N MAX=9.3N AVG=6.25N STD DEV=1.19	MIN=4.72N MAX=10.6N AVG=6.14N STD DEV=1.24	
	0.64mm(0.35mm ²)		MIN=2.69N MAX=7.51N AVG=4.94N STD DEV=1.54	MIN=2.45N MAX=4.98N AVG=3.08N STD DEV=0,489	
	1.2mm(0.75mm²)		N/A	MIN=3,3N MAX=4,2N AVG=3,9N STD DEV=0,28	
	2.8mm(0.5mm ²)		MIN=1,8N MAX=2,8N AVG=2,3N STD DEV=0,3	N/A	
Terminal Engagement Force - ISL in open Position	6.3mm (0,5mm²)	GMW 3191 Para. 4.2.4.4.1	GMW 3191 Para. 4.2.4.4.1	MIN=7,3N MAX=10,1N AVG=8,1N STD DEV=0,9	N/A
	Wire size ≥ 1.0 mm², Force < 30N		[-]	[-]	
	1.2mm(1.5mm²)		N/A	MIN=7,0N MAX=25,8N AVG=13,9N STD DEV=7,0	
	2.8mm(2.5mm ²)			MIN=5,2N MAX=6,6N AVG=5,9N STD DEV=0,4	N/A
	6.3mm (6.0mm²)		MIN=10,2N MAX=26,6N AVG=18,7N STD DEV=5,2	N/A	
	Forward Stop ≥ 25N		PASS	PASS	

Results Summary:

Results Comments:

Sequence 2 Group 2 - GMW3191: Connector to Connector Engagement Force

Description of Testing:

During Sequence 2, Group 2, connection system engagement (force to move lever to locked position) and unlocked disengagement (force to move lever from locked position) forces were measured. Prior to testing, the conditioning sequence per GMW3191, section 3.3 was applied to plastic components. Connector engagement force testing was conducted using a Instron Test Machine and Mark 10 hand-held force gauge.

Description of Samples Tested:

90P ECM Female Connector Assembly	
Loading Configuration:	Fully Loaded
112P ECM Female Connector Assembly	
Loading Configuration:	Fully Loaded
Acceptance Criteria:	
90P ECM Female Connector Assembly	
Engagement Force =	75N Maximum
Disengagement Force =	75N Maximum
112P ECM Female Connector Assembly	
Engagement Force =	75N Maximum
Disengagement Force =	75N Maximum

Results Summary: Instron Testing

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to move lever to locked position TEST PERFORMED WITH INSTRON MACHINE AT 50mm/min, All terminal locations populated.	75N Max.	GMW3191 Para 4.2.8	MIN= 49.3N MAX= 63.9N AVG= 54.0N STD DEV= 4.77	MIN= 52.2N MAX= 66.4N AVG= 56.6N STD DEV= 3.95

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to move lever from locked position	75N Max.	GMW3191 Para 4.2.8	MIN- 25.1 N MAX- 35.1 N AVG- 29.6 N STD DEV=3.12	MIN- 46.72 N MAX- 51.8 N AVG- 48.7 N STD DEV=2.0

Results Comments:

Description of Samples Tested: Mark-10 Manual Gage Testing

90P ECM Female Connector Assembly	Eully Looded
112P ECM Female Connector Assembly	Fully Loaded
Loading Configuration:	Fully Loaded
Acceptance Criteria:	
90P ECM Female Connector Assembly	
Engagement Force =	/SN Maximum
112P ECM Female Connector Assembly Engagement Force =	75N Maximum

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to move lever to locked position TEST PERFORMED WITH MARK- 10 MANUAL MEASUREMENT GAGE. All terminal locations populated.	75N Max.	GMPT DRE	MIN= 58.5N MAX= 93.8N AVG= 73.1N STD DEV= 10.16	MIN= 58.9N MAX= 78.6N AVG= 70.7N STD DEV= 7.28

Results Comments:

Getting consistent data with hand held gage is problematic. Test speed and angle of force application to push surface is difficult to control. Sizable variance and non-repeatability of results is possible. Not a standard GMW or USCAR test.

Description of Samples Tested:

90P ECM Female Connector Assembly	
Loading Configuration:	per LM2 Loading
112P ECM Female Connector Assembly	1 0
Loading Configuration:	per LM2 Loading
Acceptance Criteria:	
90P FCM Female Connector Assembly	
Engagement Force –	75N Maximum
Eligagement Force –	751N Maximum
112P FCM Female Connector Assembly	
Engagement Forma –	75NI Mowimum
Engagement Force =	

Results Summary: Mark-10 Manual Gage Testing

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to move lever to locked position (TEST PERFORMED WITH MANUAL MEASUREMENT GAGE FROM SHIPPING POSITION; LM2 Circuit Loading	75N Max.	GMW3191 Para 4.2.8	MIN- 38.3 N MAX- 51.4N AVG- 44.86 N STD DEV=4.52	MIN- 42.7 N MAX- 48.8N AVG- 45.46 N STD DEV=2.00

Results Comments:

Sequence 2 Group 3 - GMW3191: Connector to Connector Disengagement Force

Description of Testing:

During Sequence 2, Group 3, connection system locked disengagement (forces to defeat primary locking mechanism) forces were measured. Prior to testing, the conditioning sequence per GMW3191, section 3.3 was applied to plastic components.

Description of Samples Tested:

90P ECM Female Connector Assembly	
Loading Configuration:	Fully Loaded
112P ECM Female Connector Assembly	
Loading Configuration:	Fully Loading
Acceptance Criteria:	
90P ECM Female Connector Assembly	
Locked Connector Disengagement Force =	120 N Min
112P ECM Female Connector Assembly	

Locked Connector Disengagement Force =

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to defeat primarly locking mechanism.	Terminal size ≤1.2mm - 80N	GMW3191 Para	MIN= 366 N MAX= 430 N	MIN= 369 N MAX= 428 N
	Terminal size > 1.2mm -120N	4.2.18.4	AVG= 409 STD DEV=17,8	AVG= 400 N STD DEV=18,8

80 N Min

Results Comments:

Sequence 2 Group 4 - GMW3191: Connector Mechanical Tests

Description of Testing:

During Sequence 2, Group 4, various mechanical aspects of the female connection were measured. Prior to testing, the conditioning sequence per GMW3191, section 3.3 was applied to plastic components. A hand-gauge was used to conduct the testing for the force to engage connector to pre-stage position and the CPA pre-stage to lock position testing.

Description of Samples Tested:

90P ECM Female Connector Assembly 112P ECM Female Connector Assembly

Acceptance Criteria:

Connector Polarization =	220N and No Electrical Contact
Terminal Position Assurance	
Pre-Lock to Lock w/out Terminals =	20 – 45 N
Pre-Lock to Lock w/ Terminals =	20 – 45 N
Pre-Lock to Lock w/ One Incorrect Term =	60N Min
Locked to Pre-Lock =	20 – 45 N
Retention of Slide/Lever in open Position =	150 N Min
Lever and Slide Force Strength	(Various – See Results Summary)
СРА	
Pre-Lock to Lock on Mated Connector =	22 N Min
Lock to Pre-Lock on Mated Connector =	10 – 30 N
CPA Closing Force on Unmated Conn. =	80 N Min
Extraction Force from Connector =	60 N Min

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Polarization Effectiveness at 90°, 180°, 270°	220N with no continuity	GMW3191 Para. 4.2.20.4	test passed	test passed
TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
ISL Pre Lock to Locked Position Force without Terminals	Protected ISL: 20N Min. / 45N Max.	GMW3191 Para. 4.2.9.4.1	New ISL Rev. is awaited. Test-repeat will be performed asap	New ISL Rev. is awaited. Test-repeat will be performed asap
ISL Pre Lock to ISL Removal from Connector Force	20N Min.	GMW3191 Para. 4.2.9.4.1	test passed	test passed
ISL Pre-Lock to Locked Force with Properly Assembled Terminals	Protected ISL: 20N Min. / 45N Max.	GMW3191 Para. 4.2.9.4.2	Side A MIN = 21.2N MAX = 24.4N AVG = 23.1N STD DEV = 1.03 Side B MIN = 20.2N MAX = 25.0N AVG = 22.4N STD DEV = 1.81	Side A MIN = 23.4N MAX = 29.7N AVG = 27.9N STD DEV = 2.0 Side B MIN = 21.3N MAX = 31.0N AVG = 26.2N STD DEV = 2.83
ISL Pre-Lock to Locked Force with One Improperly Assembled Terminal	60N, or 2X the measured value of Pre- lock to Lock Force	GMW3191 Para. 4.2.9.4.3	F≥62N	F≥62N
ISL Locked to Pre-Lock Position Force	Protected ISL: 20N Min. / 45N Max.	GMW3191 Para. 4.2.9.4.4	Side A MIN = 21.7N MAX = 25.8N AVG = 24.6N STD DEV = 1.19 Side B MIN = 21.7N MAX = 25.9N AVG = 24.4N STD DEV = 1.33	Side A MIN = 21.2N MAX = 30.5N AVG = 26.5N STD DEV = 3.26 Side B MIN = 20.6N MAX = 27.8N AVG = 23.9N STD DEV = 2.13

<u>Results Summary (continued)</u>

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to Disengage Primary Lock	70N Max	GMW3191 Para. 4.2.19.4	MIN= 34,4 N MAX= 43,2 N AVG= 40,1 N STD DEV=2,77	MIN= 24,9 N MAX= 32,7 N AVG= 28,8 N STD DEV=2,03
Lever/Slide Retention - Open Position	Withstands 50N without separation or damage.	GMW3191 Para. 4.2.10.4	test passed >50N	test passed >50N
Slide Load on Lever (Open and Closed Position)	Withstands 100N in one direction then withstands 100N in opposite direction.	GMW3191 Para. 4.2.11.4	MIN= 103,0 N MAX= 103,0 N AVG= 103,0 N STD DEV=0,0	
Side Load on Lever (Half Closed)	Withstands 60N in one direction then withstands 60N in opposite direction.	GMW3191 Para. 4.2.11.4	MIN= 63,0 N MAX= 63,0 N AVG= 62,9 N STD DEV=0,0295	
Lever/Slide Retention - Pre-lock Position to Closed Position	Withstands 150N without inadvertent closure.	GMW3191 Para. 4.2.10.4	MIN = 145N MAX = 163N AVG = 151.6N STD DEV=6,25	MIN = 142N MAX = 152N AVG = 147,8N STD DEV=3,6

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
CPA Unlock Force (Mated)	Lock to Pre-lock Force: 10N to 30N.	GMW3191 Para. 4.2.15.4.1	MAX= 15,5 N AVG= 13,9 N STD DEV=1,38	MAX= 16,1 N AVG= 13,8 N STD DEV=1,35
CPA pre-stage to lock force (Mated) TEST PERFORMED WITH MANUAL MEASUREMENT GAGE	CPA pre-stage to lock force shall be 22 N maximum	GMW3191 Para. 4.2.15.4.1	MIN= 13.9 N MAX= 17.2 N AVG= 15.48 N STD DEV=1.05	MIN= 13.8 N MAX= 15.8 N AVG= 14.7 N STD DEV=0.72
CPA Pre-lock to Lock (Unmated)	80N Min.	GMW3191 Para. 4.2.15.4.2	MIN= 191 N MAX= 207 N AVG= 200 N STD DEV=5,2	
CPA Extraction Force	60N Min.	GMW3191 Para. 4.2.15.4.3	MIN= 123 N MAX= 162 N AVG= 149 N STD DEV=10,4	

Results Comments:

All Pass except Lever/Slide Retention Pre-lock Position to Closed Position - Exception requested to GM on supplier exception no. TE18DCS-008. Requested value is 127N min at mean-3Sigma.

Sequence 2 Group 5 - Additional Test, Pre-stage Retention Test

Description of Testing:

During Sequence 2, Group 5, various additional tests included in CTS and/or as directives from the GM ECM Female Connector Staff Project Engineer were measured.

Description of Samples Tested:

3x 90P ECM Female Connector Assembly 3x 112P ECM Female Connector Assembly

Acceptance Criteria:

Pre-Stage Retention Test (Hanging) = Retain to header in pre-stage position while inverted.

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Pre-Stage Retention Test (Hanging Test)	Retain to header in pre- stage position in inverted position with 1 meter of harness	GPT DRE	test passed	test passed

Results Comments:

Connector Electrical Tests

Sequence 3 Group 1 - GMW3191: Connector Electrical 1

Description of Testing:

During Sequence 3, Group 1, the product under test was subjected to the sequence of environments as defined by GMW3191. Applied environments were: Mechanical Shock and CTS Vibration Profile w/ Thermal Cycling.

Environmental Classification:

Applied Temperature = -40° C to 125° C

Description of Samples Tested:

- 10x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 10x Fully Loaded Max Wire
- 10x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 10x Fully Loaded Max Wire

Acceptance Criteria:

Dry Circuit Resistance (Pre and Post Testing)

Generation Y 0.64mm =	$15 \text{ m}\Omega$ Max
MCON 1.2mm =	$8 \text{ m}\Omega \text{ Max}$
MCP 2.8mm =	$5 \text{ m}\Omega \text{ Max}$
MCP 6.3mm =	$1.5 \text{ m}\Omega \text{ Max}$

Results Summary:

TEST	CRITERIA	SPECIFICATION	Post DCR [mΩ] 90P	Post DCR [mΩ] 112P
		Sequence 3-1		
	15.0mΩ max for 0.64 mm Terminal Size (0.75 mm ²)		MIN=3.64 MAX=4.86 AVG=4.22 STDV=0.28	MIN=3.73 MAX=4.78 AVG=4.26 STDV=0.19
Machanical Shack	8 mΩ max for 1.2mm Terminal Size (1.5mm2)		N/A	MIN=2.30 MAX=7.26 AVG=4.58 STDV=1.13
Mechanical Shock	5.0mΩ max for 2.8mm Terminal Size (2.5mm ²)		MIN=0.84 MAX=1.24 AVG=1.03 STDV=0.10	N/A
	$1.5 m\Omega$ max for $6.3 mm$ Terminal Size ($6.0 mm^2$)		MIN= 0.35 MAX = 0.52 AVG = 0.41 STDV = 0.06	N/A
	15.0mΩ max for 0.64mm Terminal Size(0.75mm ²)		MIN=3.66 MAX=4.40 AVG=4.01 STDV=0.15	MIN=3.67 MAX=4.25 AVG=3.67 STDV=0.13
Vibration with Temperature Cycles	8 mΩ max for 1.2mm Terminal Size(1.5mm2)		N/A	MIN=2.63 MAX=6.98 AVG=4.91 STDV=1.01
	5.0mΩ max for 2.8mm Terminal Size (2.5mm ²)		MIN=0.81 MAX=1.32 AVG=0.98 STDV=0.12	N/A
	1.5 mΩ max for 6.3mm Terminal Size (6.0mm ²)		MIN= 0.35 MAX = 0.66 AVG = 0.42 STDV = 0.09	N/A

Results Comments:

Sequence 3 Group 2 - GMW3191: Connector Electrical 2

Description of Testing:

During Sequence 3, Group 2, the product under test was subjected to the sequence of environments as defined by GMW3191. Applied environments were: Thermal Aging, Thermal Shock, and Humid Heat Cyclic.

Environmental Classification:

Applied Temperature = -40° C to 125° C

Description of Samples Tested:

10x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 10x Fully Loaded Max Wire

10x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 10x Fully Loaded Max Wire

Acceptance Criteria:

Dry Circuit Resistance (Pre and Post Testing)

Generation Y 0.64 mm =	$15 \text{ m}\Omega$ Max
MCON 1.2mm =	$8 \text{ m}\Omega \text{ Max}$
MCP 2.8mm =	$5 \text{ m}\Omega \text{ Max}$
MCP 6.3mm =	1.5 mΩ Max

Results Summary:

		40	Post	Post
TEST	CRITERIA	SPECIFICATION	DCR [mΩ]	DCR [mΩ]
			90P	112P
	1	Sequence 3-2		
	CONTRACTOR AND A CONTRACTOR OF C		MIN=3.5	MIN=3.5
	15.0mΩ max for		MAX=4.5	MAX = 4.3
	0.64mm Terminal Size		AVG=3.7	AVG = 3.85
			STDV=0.23	STDV = 0.20
1	0.0 - 0			MIN= 1.4
	8.0 mg max for 1.2mm		N/A	MAX = 2.5
	Terminal Size		100000	AVG = 1.8
Thermal Aging		•	MIN=8	SIDV=0.30
	5.0mΩ max for 2.8mm		MAX= 9	
	Terminal Size		AVG= 85	N/A
			STDV=0.04	
			M1N=.4	
	1.5 mΩ max for 6.3mm		MAX=.4	N/A
	Terminal Size		AVG=.4	19493
			STDV=0.0	1000 2.5
	15.0m0 max for		MIN=3.4	WINES.5
	0.64mm Terminal Size		MAA=4.2	MAX = 4.1
	0.04mm reminal Size		STDU-0.19	STDV-018
			0101-010	MIN=1.6
	8.0 mΩ max for 1.2mm		NI/A	MAX = 2.5
	Terminal Size		A	AVG = 1.9
Thermal Shock				STDV = 0.28
	5 0 m 0 m m 6 m 2 0 m m		MIN=0.7	
	3.0H12 max 101 2.8mm		MAX=9	N/A
	Terminal Size		AVG=.8	1.000000
		-	MIN= 3	
	1.5 mΩ max for 6.3mm		MAX=4	
	Terminal Size		AVG= 35	N/A
			STDV=0.05	
	15.0.0.4		MIN=3.2	MIN=3.5
	0.64mm Terminal Size		MAX=3.9	MAX = 4.1
			AVG=3.5	AVG = 3.75
C 8			STDV=0.16	STOV=0.18 MIN=3.4
	8.0 mΩ max for 1.2mm		N/A	MAX = 4.3
ннс	Terminal Size			AVG = 3.70
				STDV=0.19
	F. 0. 0		MIN=.7	
	5.0mD max for 2.8mm		MAX=.9	N/A
	Terminal Size		AVG=.8	
			STDV=0.06	
	15 mO may for 5 2mm		MIN=3	1255
	1.5 mil max for 6.3mm Terminal Size		MAX=4	N/A
			AVG=.35	872
			STDV=0.05	

Results Comments:

Pass

March 2019

Connector Mechanical Tests – Terminal Extraction

Sequence 4 Group 1 - GMW3191: Terminal from Connector Extraction – Primary Only

Description of Testing:

During Sequence 4, Group 1, terminal extraction from the female connector was measured. Testing included the connector primary lock only.

Description of Samples Tested:

90P ECM Female Connector Assembly 112P ECM Female Connector Assembly

Acceptance Criteria:

Min
Min
Min
Min

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Terminal Extraction Force (Primary Lock Only)	Terminal Size = .64mm, Force ≥ 30N	GMW3191 Para. 4.2.5.4	MIN=32.9 N MAX=43.4N AVG=38.9N STD DEV=2.29	MIN=32.4 N MAX=46.6 N AVG=38.9 N STD DEV=2.23
	Terminal Size ≤ 1.5mm, Force ≥ 50N		N/A	MIN- 86.8 N MAX- 102 N AVG- 91.8 N
	Terminal Size ≤ 2.8mm, Force ≥ 60N		MIN- 103 N MAX- 137 N AVG- 116 N	N/A
	Terminal Size ≤ 6.3mm, Force ≥ 90N		MIN- 228 N MAX- 279 N AVG- 249 N	N/A

Results Comments:

Sequence 4 Group 2 - GMW3191: Terminal from Connector Extraction – Primary and Secondary

Description of Testing:

During Sequence 4, Group 2, terminal extraction from the female connection was measured. Testing performance included virgin, unconditioned connectors.

Description of Samples Tested:

90P ECM Female Connector Assembly 112P ECM Female Connector Assembly

Acceptance Criteria:

Terminal from Connector, Primary	& Secondary (Virgin, Unmoisturized)
Generation Y 0.64mm =	60 N Min
MCON 1.2mm =	80 N Min
MCP 2.8mm =	100 N Min
MCP 6.3mm =	120 N Min

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Terminal Extraction Force (Primary & Secondary Locks)	Terminal Size = .64mm, Force ≥ 60N	GMW3191 Para. 4.2.5.4	MIN- 148 N MAX- 189 N AVG- 168 N STD DEV=7,9	MIN- 150 N MAX- 186 N AVG- 170 N STD DEV=7,9
	Terminal Size ≤ 1.5mm, Force ≥ 80N		N/A	MIN- 174 N MAX- 246 N AVG- 232 N STD DEV=12,1
	Terminal Size ≤ 2.8mm, Force ≥ 100N		MIN- 172 N MAX- 226 N AVG- 200 N STD DEV=17,2	N/A
	Terminal Size ≤ 6.3mm, Force ≥ 120N		MIN- 381 N MAX- 513 N AVG- 462 N STD DEV=50,3	N/A

Results Comments:

Sequence 4 Group 3 - GMW3191: Terminal from Connector Extraction

Description of Testing:

During Sequence 4, Group 3, terminal extraction from the female connection was measured. Testing performance included virgin connectors that had been moisture-conditioned per GMW3191.

Description of Samples Tested:

90P ECM Female Connector Assembly 112P ECM Female Connector Assembly

Acceptance Criteria:

Secondary (Post Moisture Conditioning)
60 N Min
80 N Min
100 N Min
120 N Min

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Terminal Extraction Force (Primary & Secondary Locks after Moisture Conditioning)	Terminal Size = .64mm, Force ≥ 60N	GMW3191 Para. 4.2.5.4	MIN- 146 N MAX- 180 N AVG- 166 N STD DEV=7,4	MIN- 154 N MAX- 184 N AVG- 168 N STD DEV=7.0
	Terminal Size ≤ 1.5mm, Force ≥ 80N		N/A	MIN- 136 N MAX- 244 N AVG- 225 N STD DEV=26,4
	Terminal Size ≤ 2.8mm, Force ≥ 100N		MIN- 158 N MAX- 211 N AVG- 186 N STD DEV=14,9	N/A
	Terminal Size ≤ 6.3mm, Force ≥ 120N		MIN- 294 N MAX- 454 N AVG- 379 N STD DEV=63,5	N/A

Results Comments:

Sequence 4 Group 4 - GMW3191: Terminal from Connector Extraction

Description of Testing:

During Sequence 4, Group 4, terminal extraction from the female connection was measured. Testing performance included connectors that had been through the GMW3191 Thermal Aging environment.

Description of Samples Tested:

90P ECM Female Connector Assembly 112P ECM Female Connector Assembly

Acceptance Criteria:

Terminal from Connector, Primary &	& Secondary (Post Thermal Aging)
Generation Y 0.64mm =	50 N Min
MCON 1.2mm =	70 N Min
MCP 2.8mm =	90 N Min
MCP 6.3mm =	110 N Min

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Terminal Extraction Force (Primary & Secondary Locks after Thermal Aging)	Terminal Size = .64mm, Force ≥ 50N	GMW3191 Para. 4.2.5.4	MIN- 103 N MAX- 131 N AVG- 119 N STD DEV=6,4	MIN- 107 N MAX- 135 N AVG- 122 N STD DEV=5,7
	Terminal Size ≤ 1.5mm, Force ≥ 70N		N/A	MIN- 157 N MAX- 232 N AVG- 217 N STD DEV=11,4
	Terminal Size ≤ 2.8mm, Force ≥ 90N		MIN- 213 N MAX- 269 N AVG- 242 N STD DEV=16,3	N/A
	Terminal Size ≤ 6.3mm, Force ≥ 110N		MIN- 486 N MAX- 526 N AVG- 506N STD DEV=13,4	N/A

Results Comments:

Sequence 4 Group 5 - GMW3191: Terminal from Connector Extraction

Description of Testing:

During Sequence 4, Group 4, terminal extraction from the female connection was measured. Testing performance included connectors that had been through the GMW3191 Humid Heat Cyclic environment.

Description of Samples Tested:

90P ECM Female Connector Assembly 112P ECM Female Connector Assembly

Acceptance Criteria:

Terminal from Connector, Primary & Secondary (Post Humid Heat Cyclic)				
Generation Y 0.64mm =	50 N Min			
MCON 1.2mm =	70 N Min			
MCP 2.8mm =	90 N Min			
MCP 6.3mm =	110 N Min			

Results Summary:

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Terminal Extraction Force (Primary & Secondary Locks after Humid Heat Cyclic)	Terminal Size = .64mm, Force ≥ 50N	GMW3191 Para. 4.2.5.4	MIN- 103 N MAX- 197 N AVG- 168 N STD DEV=14.5	MIN- 160 N MAX- 191 N AVG- 173 N STD DEV=7.0
	Terminal Size ≤ 1.5mm, Force ≥ 70N		N/A	MIN- 166 N MAX- 247 N AVG- 229 N STD DEV=18,5
	Terminal Size ≤ 2.8mm, Force ≥ 90N		MIN- 160 N MAX- 215 N AVG- 192 N STD DEV=15,3	N/A
	Terminal Size ≤ 6.3mm, Force ≥ 110N		MIN- 281 N MAX- 428 N AVG- 374 N STD DEV=56,9	N/A

Results Comments:

GMW3172 Testing

Sequence 5 Group 1 - GMW3172: Pressure Decay Test& Electrical – Leg 1

Description of Testing:

During Sequence 5, Group 1, the product under test was subjected to the sequence of environments as defined by GMW3172. Applied environments were: Mechanical Shock – Collision and Pothole, Vibration w/ Thermal Shock and Power Temperature Cycling (PTC).

Environmental Classification:

Applied Temperature = -40°C to 125°C with Exception to PTC PTC Applied Temperature - -40°C to 105°C with Energized Circuits (See Specific Powered Circuit Configurations in Appendix A).

Description of Samples Tested:

- 8x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 8x Fully Loaded Max Wire
- 8x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 8x Fully Loaded Max Wire

Acceptance Criteria:

Dry Circuit Resistance (Pre and Pos	t Testing)
Generation Y 0.64mm =	$15 \text{ m}\Omega \text{ Max}$
MCON 1.2mm =	$8 \text{ m}\Omega \text{ Max}$
MCP 2.8mm =	$5 \text{ m}\Omega$ Max
MCP 6.3mm =	$1.5 \text{ m}\Omega$ Max
Pressure Decay =	5 CC/Min - Criteria to be Discussed

<u>Results Summary (Electrical):</u>

TEST	CRITERIA	SPECIFICATION	Post	Post			
1631	CKITERIA	SPECIFICATION	90P	112P			
Sequence 5-1							
	15.0mΩ max for 0.64mm Terminal Size		MIN=3.90 MAX=5.18 AVG=4.40 STDV=.2206	MIN= 3.75 MAX=6.01 AVG=4.15 STDV=.0.2784			
Initial	8.0 mΩ max for 1.2mm Terminal Size		N/A	MIN= 1.31 MAX= 2.51 AVG= 1.649 STDV= 1.0308			
	5.0mΩ max for 2.8mm Terminal Size		MIN=0.69 MAX=1.30 AVG=0.91 STDV=0.1420	N/A			
	1.5 mΩ max for 6.3mm Terminal Size		MIN= 0.45 MAX= 0.55 AVG= 0.49 STDV=0.0305	N/A			
	15.0mΩ max for 0.64mm Terminal Size		MIN= 1.55 MAX= 4.63 AVG= 3.98 STDV= 0.4257	MIN= 1.85 MAX=5.46 AVG= 3.92 STDV= 1.2326			
Mechanical Shock/Vibratio n with	8.0 mΩ max for 1.2mm Terminal Size		N/A	MIN= 1.53 MAX= 3.82 AVG= 2.40 STDV= .5216			
Temperature Cycles	5.0mΩ max for 2.8mm Terminal Size		MIN= 0.66 MAX= 1.03 AVG= 0.81 STDV= 0.0936	N/A			
	1.5 mΩ max for 6.3mm Terminal Size		MIN= 0.47 MAX= 0.62 AVG= 0.53 STDV= 0.0371	N/A			
	15.0mΩ max for 0.64mm Terminal Size		MIN= 3.22 MAX= 5.79 AVG= 4.45 STDV= 0.4877	MIN= 2.70 MAX= 6.39 AVG= 4.25 STDV= 0.6648			
Thermal Shock	8.0 mΩ max for 1.2mm Terminal Size	2018 Diesel ECM Connection	N/A	MIN= 1.82 MAX= 6.87 AVG= 3.174 STDV= .9118			
	5.0mΩ max for 2.8mm Terminal Size	System Verification Plan	MIN= 0.70 MAX= 3.00 AVG= 1.08 STDV= 0.4428	N/A			
	1.5 mΩ max for 6.3mm Terminal Size		MIN= 0.45 MAX= 0.72 AVG= 0.58 STDV= 0.0683	N/A			

TEST	CRITERIA	SPECIFICATION	Post DCR [mΩ] 90P	Post DCR [mΩ] 112P
		Sequence 5-1		
	15.0mΩ max for 0.64mm Terminal Size		MIN= 3.51 MAX= 5.72 AVG= 4.33 STDV= 0.43	MIN=3.74 MAX=8.56 AVG=4.324 STDV=0.7378
	8.0 mΩ max for 1.2mm Terminal Size	2018 Diesel ECM	N/A	MIN=1.74 MAX=14.66 AVG=3.457 STDV=1.7659
PTC	5.0mΩ max for 2.8mm Terminal Size	Connection System Verification Plan	MIN= 0.68 MAX= 3.20 AVG= 1.16 STDV= 0.5645	N/A
	1.5 mΩ max for 6.3mm Terminal Size		MIN= 0.45 MAX= 0.70 AVG= 0.55 STDV= 0.0625	N/A

<u>Results Summary (Electrical - continued):</u>

Results Summary (Pressure Decay):

90P CONNECTION SYSTEM Post Test Pressure Decay Readings - cc/min, 25C, 60% RH							
		SEQ 5	i-1				
Sample	@ 7psi	@ 4psi	@4 psi	@ 4psi			
	Initial	Mech	Thermal	PTC			
1	0.16	0.58	0.95	0.86			
2	0.16	0.28	0.67	0.49			
3	0.19	0.34	10.52	7.08			
4	0.38	0.37	4.12	4.1			
5	0.28	1.59	2.49	6.43			
6	0.28	0.38	0.62	1.41			
7	0.27	0.15	0.34	0.42			
8	0.58	0.58	0.95	Fail			

112P CONNECTION SYSTEM Post Test Pressure Decay Readings - cc/min, 25C, 60% RH							
		SEQ 5	i-1				
Sample	@ 7psi Initial	@ 4psi Mech Shock/Vibe	@4 psi Thermal Shock	@ 4psi PTC			
1	2.74	2.98	3.59	3.29			
2	1.19	0.47	0.83	0.9			
3	0.17	0.26	0.53	0.55			
4	0.23	0.13	0.27	0.34			
5	0.18	0.34	0.58	0.65			
6	0.37	0.3	0.26	0.33			
7	0.17	1.35	1.89	1.83			
8	0.19	0.13	0.3	0.3			

Results Comments:

Pressure Decay:

For pressure decay failures on 90P, 3/8 did not meet suggested criteria of 5 cc/min. For pressure decay on 112P, all pressure decays were < 5 cc/min,

On the 90P, two root causes were identified: 1) Cuts in wire insulation due to high stress concentration from interior cover ribs. 2) Defect in sealing surface in 90P header.

Results Comments (continued):

Dry Circuit Resistance:

0.64 – 80/80 Circuits Passed 1.2mm – 78/80 Circuits Passed 2.8mm – 64/64 Circuits Passed 6.3mm – 16/16 Circuits Passed

For the 1.2mm contacts, all dry circuit resistance values were less than $15m\Omega$. The high resistance was identified to be in the crimp of the contact – with stable contact interfaces. TE had identified crimp improvements and has submitted a re-test plan to GM for these improvements.

Sequence 5 Group 2 - GMW3172: Pressure Decay Test & Electrical – Leg 2

Description of Testing:

During Sequence 5, Group 2, the product under test was subjected to the sequence of environments as defined by GMW3172. Applied environments were: Humid Heat Cyclic, Thermal Shock, Power Temperature Cycling (PTC), Mechanical Shock – Collision and Pothole, Vibration w/ Thermal Cycling.

Environmental Classification:

Applied Temperature = -40°C to 125°C with Exception to PTC PTC Applied Temperature - -40°C to 105°C with Energized Circuits (See Specific Powered Circuit Configurations in Appendix A).

Description of Samples Tested:

- 8x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 8x Fully Loaded Max Wire
- 8x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 8x Fully Loaded Max Wire

Acceptance Criteria:

Dry Circuit Resistance (Pre and Post	Testing)
Generation Y 0.64mm =	$15 \text{ m}\Omega$ Max
MCON 1.2mm =	8 mΩ Max
MCP 2.8mm =	$5 \text{ m}\Omega \text{ Max}$
MCP 6.3mm =	1.5 mΩ Max
Pressure Decay =	5 CC/Min - Criteria to be Discussed

<u>Results Summary (Electrical):</u>

TEST	CRITERIA	SPECIFICATION	Post DCR [mQ]	Post DCR ImO1	Post DCR (mQ)	Post DCR [mQ]
TEST	SHITCHIN	of Left Text Text	90P	112P	90P	112P
	S	Seque	nce 5-2B			
	15.0mΩ max for 0.64mm Terminal Size		MIN=3.92 MAX=5.12 AVG=4.24 STDV=0.1864	MIN=3.90 MAX=4.45 AVG=4.22 STDV=0.1498 MIN=1.42	MIN=3.44 MAX=4.90 AVG=3.80 STDV=0.2205	MIN= 3.95 MAX= 4.73 AVG= 4.28 STDV= 0.1624 MIN= 1.22
	8.0 mΩ max for 1.2mm Terminal Size		N/A	MAX=2.94 AVG=1.88 STDV=0.3784	N/A	MAX=2.20 AVG=1.57 STDV=0.2212
initial	5.0mΩ max for 2.8mm Terminal Size		MIN=0.74 MAX=1.08 AVG=0.862 STDV=0.0745	N/A	MIN= 0.67 MAX= 1.02 AVG= 0.843 STDV= 0.0920	N/A
	1.5 mΩ max for 6.3mm Terminal Size		MIN=0.42 MAX=0.51 AVG=0.46 STDV=0.0355	N/A	MIN=0.42 MAX=0.51 AVG=0.451 STOV=0.0336	N/A
	15.0mΩ max for 0.64mm Terminal Size		MIN=3.58 MAX=4.10 AVG=3.80 STDV=0.1120	MIN=3.84 MAX=4.60 AVG=4.23 STDV=0.1626	MIN= MAX=3.89 AVG= STDV=	MIN= 4.06 MAX= 4.41 AVG= 4.29 STDV=0.1557
ннс	8.0 mΩ max for 1.2mm Terminal Size		N/A	MIN=1.66 MAX=6.14 AVG=2.72 STDV=0.9538	N/A	MIN=1.37 MAX=3.11 AVG=2.00 STDV=0.3432
THE .	5.0mΩ max for 2.8mm Terminal Size		MIN=0.74 MAX=1.53 AVG=0.95 STDV=0.1788	N/A	MIN=0.68 MAX=1.02 AVG=0.84 STDV=0.0957	N/A
	1.5 mΩ max for 6.3mm Terminal Size		MIN=0.43 MAX=0.54 AVG=0.469 STDV=0.0352	N/A	MIN= MAX=0.60 AVG= STDV=	N/A
	15.0mΩ max for 0.64mm Terminal Size		MIN= 3.57 MAX= 4.37 AVG= 3.84 STDV= .1601	MIN=3.94 MAX=5.40 AVG=4.29 STDV=0.3080	MIN=3.42 MAX=5.12 AVG=3.97 STDV=0.3445	MIN= 3.96 MAX= 5.82 AVG=D.33 STDV= 0.3848
	8.0 mΩ max for 1.2mm Terminal Size		N/A	MIN=1.94 MAX=10.31 AVG=4.378 STOV=2.1063	N/A	MIN=2.05 MAX=5.44 AVG=3.048 STDV=0.7105
I-SNOCK	5.0mΩ max for 2.8mm Terminal Size		MIN=0.79 MAX=1.70 AVG=1.05 STDV=0.2270	N/A	MIN=0.68 MAX=1.42 AVG=0.95 STDV=0.1667	N/A
	1.5 mΩ max for 6.3mm Terminal Size		MIN=0.46 MAX=0.64 AVG=0.54 STDV=0.609	N/A	MIN=0.48 MAX=0.77 AVG=0.56 STDV=0.0923	N/A

TEST	CRITERIA	SPECIFICATION	Post DCR [mΩ] 90P	Post DCR [mΩ] 112P	Post DCR [mΩ] 90P	Post DCR [mΩ] 112P
	S	equence 5-2A			Seque	nce 5-2B
	15.0mΩ max for 0.64mm Terminal Size		MIN= 3.35 MAX= 4.24 AVG= 3.697 STDV=0.2125	MIN=3.88 MAX=5.40 AVG=4.429 STDV=0.3961	MIN=3.30 MAX=4.77 AVG=3.768 STDV=0.2955	MIN=3.94 MAX=5.13 AVG=4.368 STDV=0.2739
	8.0 mΩ max for 1.2mm Terminal Size	2018 Diesel ECM	N/A	MIN=1.94 MAX=6.69 AVG=3.818 STDV=1.3863	N/A	MIN=1.42 MAX=6.61 AVG=2.879 STDV=1.0434
PTC 5.0mΩ max for 2.8mm Terminal Size 1.5 mΩ max for 6.3mm Terminal Size	5.0mΩ max for 2.8mm Terminal Size	Connection System Verification Plan	MIN= 0.76 MAX= 1.91 AVG= 1.156 STDV= 0.3498	N/A	MIN= 0.65 MAX= 1.52 AVG=0.909 STDV=0.1915	N/A
	1.5 mΩ max for 6.3mm Terminal Size		MIN= 0.44 MAX= 0.62 AVG= 0.520 STDV= 0.0709	N/A	MIN=0.44 MAX=0.73 AVG=0.543 STDV= 0.1002	N/A
Mechanical Shock/Vibration with Temperature Cycles	15.0mΩ max for 0.64mm Terminal Size				MIN=1.29 MAX=4.65 AVG=3.555 STDV=0.6343	MIN=3.95 MAX=5.96 AVG=4.524 STDV=0.5273
	8.0 mΩ max for 1.2mm Terminal Size	2018 Diesel ECM			N/A	MIN=2.03 MAX=10.0 AVG=3.597 STDV=1.6634
	5.0mΩ max for 2.8mm Terminal Size	Connection System Verification Plan			MIN=0.72 MAX=1.56 AVG=0.967 STDV=0.1865	N/A
	1.5 mΩ max for 6.3mm Terminal Size				MIN=0.47 MAX=1.07 AVG=0.681 STDV=0.2071	N/A

<u>Results Summary (Electrical - continued):</u>

Results	Summary	(Pressure	Decay):

90P CONN	P CONNECTION SYSTEM Post Test Pressure Decay			90P CONNECTION SYSTEM Post Test Pressure Decay Re			y Readings -			
	Readings -	cc/min, 25	5C, 60% RH			cc/min, 25C, 60% RH				
		SEQ	5-2a					SEQ 5-2	2b	
Sample	@ 7psi	@ 4psi	@4 psi	@ 4psi	Sample	@ 7psi	@ 4psi	@4 psi	@ 4psi	@4 psi
	Intial	HHC	Thermal	PTC		Intial	HHC	Thermal	PTC	Mech
1	0.18	0.21	2.17	9.71	1	0.59	0.27	0.37	1.66	2.18
2	0.22	0.56	2.17	Fail	2	0.14	3.32	4.73	1.85	1.82
3	3.08	2.86	4.12	5.53	3	0.18	0.69	0.33	0.42	0.58
4	2.59	4.04	4.11	1.96	4	0.17	0.65	0.48	1.3	1.23
5					5					
6					6					
7					7					
8					8					
112P CONNECTION SYSTEM Post Test Pressure										
112P CO	NNECTION	N SYSTEM P	ost Test Pr	essure	112P CON	NECTION	SYSTEM Po	ost Test Pre	essure Dec	ay Readings -
112P CO Dec	NNECTION ay Reading	N SYSTEM F gs - cc/min	ost Test Pr , 25C, 60%	essure RH	112P CON	NECTION	SYSTEM Po cc/min,	ost Test Pre 25C, 60% R	essure Dec H	ay Readings -
112P CC Dec	NNECTION ay Reading	N SYSTEM F gs - cc/min SEQ	ost Test Pr , 25C, 60% ,5-2a	essure RH	112P CON	INECTION	SYSTEM Po cc/min,	ost Test Pre 25C, 60% R SEQ 5-2	essure Dec H 2b	ay Readings -
112P CO Dec	NNECTION ay Reading	N SYSTEM F gs - cc/min SEQ	ost Test Pr , 25C, 60% .5-2a @4 psi	essure RH	112P CON		SYSTEM Po cc/min,	ost Test Pre 25C, 60% R SEQ 5-2 @4 psi	essure Dec H 2b	ay Readings - @4 psi
112P CC Dec Sample	WNECTION ay Reading @ 7psi	SYSTEM F gs - cc/min SEQ @ 4psi	ost Test Pr , 25C, 60% 5-2a @4 psi Thermal	essure RH @ 4psi	112P CON Sample	@ 7psi	e 4psi	ost Test Pre 25C, 60% R SEQ 5-2 @4 psi Thermal	essure Deca H 2b @ 4psi pTC	@4 psi Mech
112P CC Dec Sample	WNECTION ay Reading @ 7psi Intial	system F gs - cc/min SEQ @ 4psi HHC	ost Test Pr , 25C, 60% 5-2a @4 psi Thermal Shock	@ 4psi PTC	112P CON Sample	@ 7psi Intial	SYSTEM Po cc/min, @ 4psi HHC	ost Test Pre 25C, 60% R SEQ 5-2 @4 psi Thermal Shock	essure Deca H 2b @ 4psi PTC	@4 psi Mech Shock/Vibe
112P CO Dec Sample	WNECTION ay Reading @ 7psi Intial 0.19	N SYSTEM F gs - cc/min SEQ @ 4psi HHC 0.13	2005t Test Pr , 25C, 60% 1 5-2a @4 psi Thermal Shock 0.17	essure RH @ 4psi PTC 0.55	112P CON Sample	@ 7psi Intial 0.14	WSTEM Po cc/min, @ 4psi HHC 0.22	ost Test Pre 25C, 60% R SEQ 5-2 @4 psi Thermal Shock 0.27	essure Dec H 2b @ 4psi PTC 0.55	@4 psi Mech Shock/Vibe 0.76
112P CO Dec Sample	@ 7psi Intial 0.19 0.16	SYSTEM F gs - cc/min SEQ @ 4psi HHC 0.13 0.14	2005t Test Pr , 25C, 60% 1 5-2a @4 psi Thermal Shock 0.17 0.15	@ 4psi PTC 0.55 0.73	Sample	@ 7psi Intial 0.14 0.12	© 4psi HHC 0.22 0.12	ost Test Pre 25C, 60% R SEQ 5-2 @4 psi Thermal Shock 0.27 0.14	essure Dec H 2b @ 4psi PTC 0.55 0.42	@4 psi Mech Shock/Vibe 0.76 0.74
112P CC Dec Sample 1 2 3	WNECTION ay Reading @ 7psi Intial 0.19 0.16 0.15	N SYSTEM F gs - cc/min SEQ @ 4psi HHC 0.13 0.14 0.13	Post Test Pr , 25C, 60% 5-2a @4 psi Thermal Shock 0.17 0.15 0.14	@ 4psi PTC 0.55 0.73 0.42	Sample	@ 7psi Intial 0.14 0.12 0.12	SYSTEM Po cc/min, @ 4psi HHC 0.22 0.12 0.23	25C, 60% R 25C, 60% R SEQ 5-2 @4 psi Thermal Shock 0.27 0.14 0.23	essure Dec H 2b @ 4psi PTC 0.55 0.42 0.59	@4 psi Mech Shock/Vibe 0.76 0.74 0.63
112P CC Dec Sample 1 2 3 4	WNECTION ay Reading @ 7psi Intial 0.19 0.16 0.15 0.16	8 SYSTEM F gs - cc/min SEQ @ 4psi HHC 0.13 0.14 0.13 0.11	2005t Test Pr , 25C, 60% 5-2a @4 psi Thermal Shock 0.17 0.15 0.14 0.12	@ 4psi PTC 0.55 0.73 0.42 0.43	Sample	@ 7psi Intial 0.14 0.12 0.12 0.13	SYSTEM Po cc/min, @ 4psi HHC 0.22 0.12 0.23 0.12	25C, 60% R 25C, 60% R SEQ 5-2 @4 psi Thermal Shock 0.27 0.14 0.23 0.14	essure Dec H 2b @ 4psi PTC 0.55 0.42 0.59 0.48	@4 psi @4 psi Mech Shock/Vibe 0.76 0.74 0.63 0.64
112P CO Dec Sample 1 2 3 4 5	@ 7psi Intial 0.19 0.16 0.15 0.16	SYSTEM F gs - cc/min SEQ @ 4psi HHC 0.13 0.14 0.13 0.11	2005t Test Pr , 25C, 60% 5-2a @4 psi Thermal Shock 0.17 0.15 0.14 0.12	@ 4psi PTC 0.55 0.73 0.42 0.43	112P CON Sample 1 2 3 4 5	@ 7psi Intial 0.14 0.12 0.12 0.13	SYSTEM Po cc/min, @ 4psi HHC 0.22 0.12 0.23 0.12	25C, 60% R 25C, 60% R 8EQ 5-2 @4 psi Thermal Shock 0.27 0.14 0.23 0.14	essure Deco H 2b @ 4psi PTC 0.55 0.42 0.59 0.48	@4 psi Mech Shock/Vibe 0.76 0.74 0.63 0.64
112P CO Dec Sample 1 1 2 3 4 5 6	@ 7psi Intial 0.19 0.16 0.15 0.16	© SYSTEM F s - cc/min SEQ @ 4psi HHC 0.13 0.14 0.13 0.11	Post Test Pr , 25C, 60% 5-2a @4 psi Thermal Shock 0.17 0.15 0.14 0.12	@ 4psi PTC 0.55 0.73 0.42 0.43	112P CON Sample 1 2 3 4 5 6	@ 7psi Intial 0.14 0.12 0.12 0.13	SYSTEM Po cc/min, @ 4psi HHC 0.22 0.12 0.23 0.12	25C, 60% R 25C, 60% R 8EQ 5-2 @4 psi Thermal Shock 0.27 0.14 0.23 0.14	25 @ 4psi PTC 0.55 0.42 0.59 0.48	@4 psi Mech Shock/Vibe 0.76 0.74 0.63 0.64
112P CO Dec Sample 1 2 3 4 5 6 7	@ 7psi Intial 0.19 0.16 0.15 0.16	8 SYSTEM F gs - cc/min SEQ @ 4psi HHC 0.13 0.14 0.13 0.11	Post Test Pr , 25C, 60% 5-2a @4 psi Thermal Shock 0.17 0.15 0.14 0.12	essure RH @ 4psi PTC 0.55 0.73 0.42 0.43	112P CON Sample 1 2 3 4 5 6 7	@ 7psi Intial 0.14 0.12 0.12 0.13	SYSTEM Po cc/min, @ 4psi HHC 0.22 0.12 0.23 0.12	25C, 60% R 25C, 60% R 8EQ 5-2 @4 psi Thermal Shock 0.27 0.14 0.23 0.14	25 (0,55) (0,55) (0,55) (0,42) (0,59) (0,48)	@4 psi Mech Shock/Vibe 0.76 0.74 0.63 0.64

Results Comments:

Pressure Decay:

For pressure decay failures on 90P, 3/8 did not meet suggested criteria of 5 cc/min. For pressure decay on 112P, all pressure decays were < 5 cc/min.

On the 90P, two root causes were identified: 1) Cuts in wire insulation due to high stress concentration from interior cover ribs. 2) Defect in sealing surface in 90P header.

Results Comments (continued):

Dry Circuit Resistance:

0.64 – 80/80 Circuits Passed 1.2mm – 78/80 Circuits Passed 2.8mm – 64/64 Circuits Passed 6.3mm – 16/16 Circuits Passed

For the 1.2mm contacts, all dry circuit resistance values were less than $15m\Omega$. The high resistance was identified to be in the crimp of the contact – with stable contact interfaces. TE had identified crimp improvements and has submitted a re-test plan to GM for these improvements.

Sequence 5 Group 3 - GMW3172: Pressure Decay Test & Electrical – Leg 3

Description of Testing:

During Sequence 5, Group 3, the product under test was subjected to the sequence of environments as defined by GMW3172. Applied environments were: Humid Heat Constant, Thermal Shock, Power Temperature Cycling (PTC), Enclosure Protection (IP6K9K & IPx8).

Environmental Classification:

Applied Temperature = -40°C to 125°C with Exception to PTC PTC Applied Temperature - -40°C to 105°C with Energized Circuits (See Specific Powered Circuit Configurations in Appendix A).

Description of Samples Tested:

- 8x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 8x Fully Loaded Max Wire
- 8x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 8x Fully Loaded Max Wire

Acceptance Criteria:

<u>Results Summary (Electrical):</u>

-	Constant States of		Post	Post	Post	Post	
TEST	CRITERIA	SPECIFICATION	DCR [mΩ]	DCR [mΩ]	DCR [mΩ]	DCR [mΩ]	
95 72		anuanca E 2A	902	112P	909	112P	
	3	Sequer	MINLA OD				
	15.0mΩ max for		MAX=5.86	MAX=4.74	MAX=4.94	MAX=4.56	
	0.64mm Terminal Size		AVG=5.154	AVG=2.266	AVG=4.471	AVG=4.281	
			STDV=0.3640	STDV=0.1576	STDV=0.2269	STDV=1213	
	8.0 m0 may for 1.2mm			MIN=1.47		MIN=1.29	
	Terminal Size		N/A	AVG=1.846	N/A	AVG=1.624	
20000000	Terminar Size			STDV=.2314		STDV=0.3046	
Initial			MIN=0.82		MIN=0.75		
	$5.0m\Omega$ max for $2.8mm$		MAX=1.07	N/A	MAX=1.10	N/A	
	Terminal Size		AVG=0.935	N/A	AVG=0.860	N/A	
÷			STDV=0.0708		STDV=0.0836		
	1.5 mΩ max for 6.3mm		MIN=0.48	10/10/1	MIN=0.45	10.020	
	Terminal Size		AVG=0.516	N/A	AVG=0.476	N/A	
			STDV=0.0342		STDV=0.0233		
			MIN=3.99	MIN=3.72	MIN=3.89	MIN=3.91	
	15.0mΩ max for		MAX=4.97	MAX=4.35	MAX=4.71	MAX=4.37	
	0.64mm Terminal Size		AVG=4.364	AVG=4.08	AVG=9.308	AVG=9.127	
÷	j <u> </u>		3107=0.2304	510V=:1205	0101-0.1302	104-0.1210	
	8.0 mΩ max for 1.2mm Terminal Size		1000	MAX=2 67	0.000	MAX=4.09	
			N/A	AVG=2.054	N/A	AVG=1.933	
ннсо				STDV=0.2643		STDV=0.6428	
inteo			MIN=0.65		MIN=0.72		
	5.0mΩ max for 2.8mm		MAX=1.09	N/A	MAX=0.95	N/A	
	Terminal Size		AVG=0.817 STDV-0.059	Contract of	AVG=0.618 STDV-0.0578		
	88		3104-0.035	;	5101-0.0376	<u>.</u>	
	15 mO max for 6 3mm		MIN=0.45		MIN=0.46		
	Terminal Size		AVG=0.483	N/A	AVG=0.486	N/A	
	dictation description		STDV=0.0292		STDV=0.02		
	15.0m0 may for		MIN=4.02	MIN=3.79	MIN=3.99	MIN=3.93	
	15.0mm Tarminal Size		MAX=7.03	MAX=5.52	MAX=6.23	MAX=5.11	
	0.04000 1000000 3120		STDV=0.6381	STDV=0.3830	STDV=0.5167	STDV=0.2753	
	0.0			MIN=1.93		MIN=1.36	
	8.0 mil max for 1.2mm		N/A	MAX= 4.44	N/A	MAX=6.41	
TChock	Terminar Size		1	STDV=0.600		STDV=1.0636	
1-SHOCK	5 0m0 ms (MIN=0.73		MIN=0.75		
	5.0ml2 max for 2.8mm		MAX=1.14	N/A	MAX=1.01	N/A	
	reminal size		STDV=0 1153		STDV=0.0673		
			MIN=0.47		MIN=0.48		
	1.5 mΩ max for 6.3mm		MAX=0.57	N/A	MAX=0.56	N/A	
	Terminal Size		AVG=0.514	00000	AVG=0.514	CONTRACT OF A	
-			0101-0.0374		0101-0.0302		

TEST	CRITERIA	SPECIFICATION	Post DCR [mΩ] 90P	Post DCR [mΩ] 112P	Post DCR [mΩ] 90P	Post DCR [mΩ] 112P
-k	5	Sequence 5-3A			Seque	nce 5-3B
PTC	15.0mΩ max for 0.64mm Terminal Size		MIN=3.91 MAX=6.85 AVG=4.785 STDV=0.6157	MIN=3.80 MAX=5.46 AVG=4.353 STDV=0.3432	MIN=3.85 MAX=5.96 AVG=4.681 STDV=0.3846	MIN=3.89 MAX=5.06 AVG=4.31 STDV=0.2664
	8.0 mΩ max for 1.2mm Terminal Size	2018 Diesel ECM	N/A	MIN=2.01 MAX=5.15 AVG=3.095 STDV=.6416	N/A	MIN=1.32 MAX=6.78 AVG=2.404 STDV=1.1113
	5.0mΩ max for 2.8mm Terminal Size	Connection System Verification Plan	MIN=0.70 MAX=1.14 AVG=0.830 STDV=0.1194	N/A	MIN=0.71 MAX=1.17 AVG=0.820 STDV=0.1044	N/A
	1.5 mΩ max for 6.3mm Terminal Size		MIN=0.43 MAX=0.52 AVG=0.478 STDV=0.0306	N/A	MIN=0.42 MAX=0.49 AVG=0.453 STDV=0.0212	N/A
	15.0mΩ max for 0.64mm Terminal Size	2018 Diesel ECM			MIN=3.89 MAX=6.01 AVG=4.695 STDV=0.4362	MIN=3.77 MAX=5.56 AVG=4.447 STDV=0.4873
Mechanical Shock/Vibration	8.0 mΩ max for 1.2mm Terminal Size				N/A	MIN=1.49 MAX=11.21 AVG=3.288 STDV=2.0549
with Temperature Cycles	5.0mΩ max for 2.8mm Terminal Size	Verification Plan			MIN=0.70 MAX=1.23 AVG=0.835 STDV=0.1141	N/A
	1.5 mΩ max for 6.3mm Terminal Size				MIN=0.42 MAX=0.50 AVG=0.454 STDV=0.0262	N/A

<u>Results Summary (Electrical – continued)</u>

<u>Results Summary (Pressure Decay):</u>

90P CONN	90P CONNECTION SYSTEM Post Test Pressure Decay Readings - cc/min, 25C, 60% RH			ure Decay	90P CONN	ECTION SY	STEM Post cc/min, 25	Test Press C, 60% RH	ure Decay I	Readings -
		SEQ	5-3a					SEQ 5-3b		
Sample	@ 7psi	@ 4psi	@4 psi	@ 4psi	Sample	@ 7psi	@ 4psi	@4 psi	@ 4psi	@4 psi
	Intial	HHCO	Thermal	PTC		Intial	HHCO	Thermal	PTC	Mech
1	0.91	1.39	2.78	9.33	1	0.32	0.64	1.4	13.67	8.74
2	0.21	0.08	0.85	11.98	2	0.19	0.15	0.5	13.94	14.27
3	0.18	2.55	1.37	4.4	3	0.19	0.09	3.91	10.67	11.99
4	0.18	0.1	1.11	Fail	4	0.21	0.75	4.48	13.06	13.32
5					5					
6					6					
7					7					
8					8					
112P CONN	NECTION SY Readings -	/STEM Post cc/min, 25	t Test Press C, 60% RH	ure Decay	112P CONN	IECTION SY	/STEM Post cc/min, 25	t Test Press C, 60% RH	ure Decay	Readings -
112P CONN	NECTION SY Readings -	/STEM Post cc/min, 25 SEQ	t Test Press C, 60% RH 5-3a	ure Decay	112P CONN	IECTION SY	/STEM Post cc/min, 25	t Test Press C, 60% RH SEQ 5-3b	sure Decay	Readings -
112P CONN Sample	Readings - @ 7psi Intial	/STEM Post cc/min, 25 SEQ @ 4psi HHCO	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock	@ 4psi PTC	112P CONN Sample	@ 7psi Intial	/STEM Post cc/min, 25 @ 4psi HHCO	C, 60% RH SEQ 5-3b @4 psi Thermal Shock	@ 4psi PTC	Readings - @4 psi Mech Shock/Vi
Sample	Readings - @ 7psi Intial 0.07	(STEM Post cc/min, 25 SEQ @ 4psi HHCO 0.08	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock 0.08	wre Decay @ 4psi PTC 0.6	112P CONN Sample	@ 7psi Intial 0.17	(STEM Post cc/min, 25 @ 4psi HHCO 0.1	t Test Press C, 60% RH SEQ 5-3b @4 psi Thermal Shock 0.09	@ 4psi PTC 0.37	Readings - @4 psi Mech Shock/Vi 0.08
Sample	CTION SY Readings - @ 7psi Intial 0.07 0.18	(STEM Post cc/min, 25 SEQ @ 4psi HHCO 0.08 0.16	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock 0.08 0.08	@ 4psi PTC 0.6 0.87	Sample	@ 7psi Intial 0.17 0.12	(STEM Post cc/min, 25 @ 4psi HHCO 0.1 0.17	t Test Press C, 60% RH SEQ 5-3b @4 psi Thermal Shock 0.09 0.08	@ 4psi PTC 0.37 0.46	Readings - @4 psi Mech Shock/Vi 0.08 0.58
Sample	Contemporation (Contemporation) (Contemp	(STEM Post cc/min, 25 SEQ @ 4psi HHCO 0.08 0.16 0.18	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock 0.08 0.08 0.07	@ 4psi PTC 0.6 0.87 0.43	Sample	@ 7psi Intial 0.17 0.12 0.13	(STEM Post cc/min, 25 @ 4psi HHCO 0.1 0.17 0.18	t Test Press C, 60% RH SEQ 5-3b @4 psi Thermal Shock 0.09 0.08 0.08	@ 4psi PTC 0.37 0.46 0.48	Readings - @4 psi Mech Shock/Vi 0.08 0.58 0.76
Sample	Readings - @ 7psi Intial 0.07 0.18 0.21 0.15	(STEM Post cc/min, 25 SEQ @ 4psi HHCO 0.08 0.16 0.18 0.17	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock 0.08 0.08 0.07 0.15	@ 4psi PTC 0.6 0.87 0.43 0.38	Sample	@ 7psi Intial 0.17 0.12 0.13 0.13	(STEM Post cc/min, 25 @ 4psi HHCO 0.1 0.17 0.18 0.09	t Test Press C, 60% RH SEQ 5-3b @4 psi Thermal Shock 0.09 0.08 0.08 0.07	@ 4psi PTC 0.37 0.46 0.48 0.78	Readings - @4 psi Mech Shock/Vi 0.08 0.58 0.76 0.99
Sample 112P CONN Sample 1 2 3 4 5	ECTION SY Readings - @ 7psi Intial 0.07 0.18 0.21 0.15	(STEM Post cc/min, 25 SEQ @ 4psi HHCO 0.08 0.16 0.18 0.17	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock 0.08 0.08 0.07 0.15	@ 4psi PTC 0.6 0.87 0.43 0.38	112P CONN Sample 1 2 3 4 5	@ 7psi Intial 0.17 0.12 0.13 0.13	257EM Post cc/min, 25 @ 4psi HHCO 0.1 0.17 0.18 0.09	t Test Press C, 60% RH SEQ 5-3b @4 psi Thermal Shock 0.09 0.08 0.08 0.07	@ 4psi PTC 0.37 0.46 0.48 0.78	Readings - @4 psi Mech Shock/Vi 0.08 0.58 0.76 0.99
Sample Sample	CTION SY Readings - @ 7psi Intial 0.07 0.18 0.21 0.15	(STEM Post cc/min, 25 SEQ @ 4psi HHCO 0.08 0.16 0.18 0.17	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock 0.08 0.08 0.07 0.15	@ 4psi PTC 0.6 0.87 0.43 0.38	112P CONN Sample 1 2 3 4 5 6	@ 7psi Intial 0.17 0.12 0.13 0.13	(STEM Post cc/min, 25 @ 4psi HHCO 0.1 0.17 0.18 0.09	t Test Press C, 60% RH SEQ 5-3b @4 psi Thermal Shock 0.09 0.08 0.08 0.07	@ 4psi PTC 0.37 0.46 0.48 0.78	Readings - @4 psi Mech Shock/Vi 0.08 0.58 0.76 0.99
112P CONN Sample 1 1 2 3 4 5 6 7	Contemporation (Contemporation) (Contemp	(STEM Post cc/min, 25 SEQ @ 4psi HHCO 0.08 0.16 0.18 0.17	t Test Press C, 60% RH 5-3a @4 psi Thermal Shock 0.08 0.08 0.07 0.15	@ 4psi PTC 0.6 0.87 0.43 0.38	112P CONN Sample 1 2 3 4 5 6 7	@ 7psi Intial 0.17 0.12 0.13 0.13	257EM Post cc/min, 25 @ 4psi HHCO 0.1 0.17 0.18 0.09	t Test Press C, 60% RH @4 psi Thermal Shock 0.09 0.08 0.08 0.07	@ 4psi PTC 0.37 0.46 0.48 0.78	Readings - @4 psi Mech Shock/Vi 0.08 0.58 0.76 0.99

Results Comments:

Pressure Decay:

For pressure decay failures on 90P, 7/8 did not meet suggested criteria of 5 cc/min. For pressure decay on 112P, all pressure decays were < 5 cc/min.

On the 90P, two root causes were identified: 1) Cuts in wire insulation due to high stress concentration from interior cover ribs. 2) Defect in sealing surface in 90P header.

Results Comments (continued):

Dry Circuit Resistance:

0.64 – 80/80 Circuits Passed 1.2mm – 79/80 Circuits Passed 2.8mm – 64/64 Circuits Passed 6.3mm – 16/16 Circuits Passed

For the 1.2mm contacts, all dry circuit resistance values were less than $15m\Omega$. The high resistance was identified to be in the crimp of the contact – with stable contact interfaces. TE had identified crimp improvements and has submitted a re-test plan to GM for these improvements.

Sequence 5 Group 4 - GMW3172: Salt Spray/Submersion – Leg 4

Description of Testing:

During Sequence 5, Group 4, the product under test was subjected to the sequence of environments as defined by GMW3172. Applied environments were: Salt Spray (40 Days) and Enclosure Protection (IP6K9K & IPx8).

Environmental Classification:

Salt Spray per GMW3172, 9.4.8

Description of Samples Tested:

8x 90P ECM Female Connector Assembly mated to 90P Denso Controller Header 2x Fully Loaded Max Wire 4x Fully Loaded Min Wire 2x Fully Loaded Mixture of Min and Max
8x 112P ECM Female Connector Assembly mated to 112P Denso Controller Header 2x Fully Loaded Max Wire 4x Fully Loaded Min Wire 2x Fully Loaded Min Wire 2x Fully Loaded Mixture of Min and Max

Acceptance Criteria:

Pre-Environment Pressure =	7 PSI Min
Pre-Environment Vacuum =	7 PSI Min
Post-Environment Pressure =	4 PSI Min
Post-Environment Vacuum =	4 PSI Min
Isolation Resistance =	100 Mohms at 500VDC
Post-Sequence Dielectric Strength=	No Breakdown or Flashover

Results Summary:

		Resistance at 500 Vdc (GΩ)									
Sample Number	Initial	After Pressure/Vacuum	After Salt	After Dust	After Water	Cycle 1 Water	Cycle 2 Water	Cycle 3 Water	Cycle 4 Water	Cycle 5 Water	After Pressure/Vacuum
		+/- 7 psig	opray		opray	Submersion	Submersion	Submersion	Submersion	Submersion	(after Submersion)
Min-1	22.27	36	39.69	>60	>60	>60	>60	>60	>60	>60	>60
Min-2	34.4	46.2	27.89	51.59	>60	>60	>60	>60	>60	>60	>60
Min-3	20.64	43.6	41.83	>60	>60	>60	>60	>60	>60	>60	>60
Min-4	34.4	51.59	>60	>60	>60	>60	>60	>60	>60	>60	>60
Mid-1	27.65	12.33	26.23	50.75	>60	>60	>60	>60	>60	>60	>60
Mid-2	27.15	31.91	24.18	31.59	>60	<10KΩ	N/A	N/A	N/A	N/A	N/A
Max-1	14.2	16.47	34.02	24.76	>60	>60	>60	>60	>60	>60	>60
Max-2	31.59	36.42	22.43	41.83	>60	>60	>60	>60	>60	>60	>60

Results Comments:

All pass except Mid-2 sample. Sample was investigated, and it was observed that the pressure tube was not inserted sufficiently passed the mat seal gland, such that during extension of the cable bundle to perform submersion test fluid inadvertently pass into the connector. The open sample was dried in chamber at 85C for 72 hours. The sample was then mated and IR greater than 100Mohm verified. The sample was then subjected to addition 4 submersion per test specification which resulted in all isolation resistance pass values.

ISL Change Sub-Set Retest - GMW3191: Generation Y Terminals

Terminal Engagement, Terminal Extraction, and Terminal Position Assurance

Description of Testing:

Group ISL Change Sub-Set Retest is support testing for modifications that were made after connector validation was initialized. Testing includes terminal engagement, terminal extraction and terminal position assurance for the Generation Y receptacle contact. Prior to testing, the conditioning sequence per GMW3191, section 3.3 was applied to plastic components.

Description of Samples Tested:

90P ECM Female Connector Assembly 112P ECM Female Connector Assembly

Acceptance Criteria:

15N Min
30 N Min
$20-45\ N$

Results Summary:

Terminal Engagement

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Terminal Engagement Force - ISL in open Position	0.64mm(0.75mm²≺ 15N	GMW 3191 Para. 4.2.4.4.1	MIN=4.5N MAX=9.3N AVG=6.25N STD DEV=1.19	MIN=4.72N MAX=10.6N AVG=6.14N STD DEV=1.24
	0.64mm(0.35mm²)< 15N		MIN=2.69N MAX=7.51N AVG=4.94N STD DEV=1.54	MIN=2.45N MAX=4.98N AVG=3.08N STD DEV=0,489

Results Comments:

Terminal Extraction

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Terminal From Connector Extraction-Primary, G-Y	Terminal Size = .64mm, Force ≥ 30N	CMW/2101 Para	MIN=30.1 N MAX=37N AVG=33.1N STD DEV=1.66	MIN=30.1 N MAX=37 N AVG=32.9 N STD DEV=1.7
Terminal From Connector Extraction- Primar+Secondary, G-Y	Terminal Size = .64mm, Force ≥ 60N	4.2.5.4	MIN=142N MAX=187N AVG=167N STD DEV=11.5	MIN=142N MAX=187N AVG=167N STD DEV=9.4

Results Comments:

Pass

Terminal Position Assurance

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
ISL Pre-Lock to Locked Force with Properly Assembled Terminals	Protected ISL: 20N Min. / 45N Max.	GMW3191 Para. 4.2.9.4.2	Side A MIN = 21.2N MAX = 24.4N AVG = 23.1N STD DEV = 1.03 Side B MIN = 20.2N MAX = 25.0N AVG = 22.4N STD DEV = 1.81	Side A MIN = 23.4N MAX = 29.7N AVG = 27.9N STD DEV = 2.0 Side B MIN = 21.3N MAX = 31.0N AVG = 26.2N STD DEV = 2.83

Results Comments:

Lever Change to Rev 2 Sub-Set Retest -

Connector to Connector Tests, Mechanical Assist Integrity, USCAR2 Drop, GMPT Hanging Test

Description of Testing:

Lever Change to Rev 2 Sub-Set Retest is support testing for modifications that were made after connector validation was initialized to the lever which increased clearance for terminal insertion. Testing includes connector engage to pre-stage, connector to connector engage, engage CPA to lock, connector to connector disengage, connector removal from pre-stage, retention of lever in open position, lever and slide force strength, USCAR2 drop test, and GMPT pre-stage retention test. Prior to testing, the conditioning sequence per GMW3191, section 3.3 was applied to plastic components.

Description of Samples Tested:

Connector to Connector Tests:		
10x 90P ECM Female Connector	Assembly	Fully Loaded
10x 112P ECM Female Connecto	or Assembly	Fully Loaded
Pre-stage Retention		
3x 90P ECM Female Connector A	Assembly	Fully Loaded
3x 112P ECM Female Connector	Assembly	Fully Loaded
Drop Test		-
18x 90P ECM Female Connector	Assembly	
18x 112P ECM Female Connecto	or Assembly	
Mechanical Assist Integrity Tests	-	
10x 90P ECM Female Connector	Assembly	
10x 112P ECM Female Connecto	or Assembly	

Acceptance Criteria:

Retention of Lever in Open Position=	150N Min
Connector Engage to Pre-stage =	75N Max
Connector Disengage from Pre-stage =	6N Min – 75NMax
Connector to Connector Engage =	75N Max
Connector to Connector Disengage=	75N Max
CPA Engage Pre-lock to Lock =	22N Max
CPA Engage Lock to Pre-Lock =	10N to 30N
Connector Drop Test	Pass
Hanging Test	Pass

Retention of Lever in Open Position

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Retention of Lever in Open Position	Withstands 150N without inadvertent closure.	GMW3191 Para. 4.2.10.4	MIN=150N	MIN=150N

Results Comments:

Pass

Connector Engage/Disengage to Pre-stage

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to engage connector to pre-stage position	75N Max.	GMW3191 Para 4.2.8	MIN=31.6N MAX=48.4N AVG=41.2N STD DEV=9.13	MIN = 33.2N MAX = 44N AVG-=39.1N STD DEV=3.88
Force to remove connector from pre-stage position	15N Min. to 75N Max.	GMW3191 Para 4.2.8	MIN=19.7N MAX=26.4N AVG= 23.4N STD DEV=2.53	MIN=20N MAX=25.4N AVG=23.2N STD DEV=1.75

Results Comments:

Connector to Connector Engage/Disengage

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Force to move lever to locked position. Test Performed with EMEA torque monitor test stand. All terminal locations populated.	75N Max.	GMW3191 Para 4.2.8	MIN= 44.6N MAX= 60N AVG= 53.5N STDEV= 5.66N	MIN= 42N MAX= 50.6N AVG= 46.8N STDEV= 2.81N
Force to move lever from locked position. Test performed with EMEA torque monitor test stand. All terminal locations populated.	75N Max.	GMW3191 Para 4.2.8	MIN= 36N MAX= 41.3N AVG= 39.1N STDEV= 1.59N	MIN= 34N MAX= 46N AVG= 39.8N STDEV= 3.74N

Results Comments:

Pass

CPA Engage to Lock

TEST CRITERIA		SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
CPA pre-stage to lock force (Mated)	CPA pre-stage to lock force shall be 22 N maximum	GMW3191 Para. 4.2.15.4.1	MIN= 8.8N MAX= 13.7N AVG=10.5N STD DEV=1.35	MIN= 8.86 N MAX= 11.5N AVG= 10.1N STD DEV=0.86
CPA Unlock Force (Mated)	CPA lock to pre-lock force: 10N to 30N	GMW3191 Para. 4.2.15.4.1	MIN= 10N MAX= 12.4N AVG= 11.4N STD DEV=0.844	MIN=10.6N MAX= 14.3N AVG= 12.8N STD DEV=1.04

Results Comments:

Pass

Hanging Test

Tranging Test		1	1	
TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P
Pre-Stage Retention Test (Hanging Test)	Retain to header in pre- stage position in inverted position with 1 meter of harness	GMPT DRE	Passed	Passed

Results Comments:

Pass

March 2019

Connector Drop Test

TEST	CRITERIA	SPECIFICATION	Multi-Cavity 90P	Multi-Cavity 112P	
Connector Drop Test	No damage that could affect functionality	USCAR2 Para 5.4.8	Passed	Passed	

Results Comments:

Appendix

A. PTC Power Circuit Configuration

90P

Circuit Nbr.	Circuit Description				
1, 46	6.3mm Power Circuits - 30.6A				
2, 23, 24 ,45, 47, 68, 69, 90	2.8mm Power Circuits - 12.7 A				
11, 13, 20, 34, 56, 58, 65, 79	0.64 Signal Circuits - 4.0A				
3, 48	0.64 millamp Circuits - 300mA				

112P

Circuit Nbr.	Circuit Description				
2, 3, 4, 30, 31, 58, 59, 60, 86, 87	1.2mm Power Circuits - 8.1A				
15, 25, 26, 54, 70, 82, 83, 111	0.64 Signal Circuits - 4.0A				
5, 61	0.64 millamp Circuits - 300mA				

WIRE POPULATION STRATEGY													
TERMINAL SIZE mm	WIRE SIZE	MAX. CABLE BUNDLE POPULATION		MED. CABLE POPULATION		MIN. CABLE POPULATION		MAX. CABLE BUNDLE POPULATION [Salt Spray Tests]		MEDIUM CABLE BUNDLE POPULATION [Salt Spray Tests]		MIN. CABLE BUNDLE POPULATION [Salt Spray Tests]	
		112P	90P	112P	90P	112P	90P	112P	90P	112P	90P	112P	90P
0.64	0.35	20	4	56	44	96	80	20	4	46	26	80	64
0.64	0.5	55	48	32	20			55	48	34	38		
0.64	0.75	21	28	8	16			21	28	16	16	16	16
1.2	0.75			8		16							
1.2	1.5	16		8				16		16		16	
2.8	0.5				4		8						
2.8	2.5		8		4				8		8		8
6.3	0.5				1		2						
6.3	6		2		1				2		2		2
CKT	CNT	112	90	112	90	112	90	112	90	112	90	112	90
CABLE BUN [mi	NDLE AREA m ²]	359	356	294	262	230	168	359	356	329	323	299	288

B. Circuit Loading Configurations

All environmental test wire insulation to ISO 6722-1, 150C Cross Link Thin Wall

C. Applicable Components Photos

112p Connection System

90P Connection System

