Engineering Report

250 FASTON INSUL. BOOT/ BOOT INSULATOR FOR POSITIVE LOCK TERMINAL

1. INTRODUCTION

1.1 Purpose

Testing was performed on 250 FASTON insulation boot and boot insulator for Positive Lock terminal to determine its conformance to the requirements of product specification 108-20020, Rev D3. and 108-3027 ,Rev.O respectively.

1.2 Scope

This report covers the electrical, mechanical, and environmental performance of 250 FASTON insulation boot and boot insulator for Positive Lock terminal. Testing was performed at the Shanghai Electrical Components Test Laboratory between February 20, 2013 and March 07, 2013. The associated test number is SECT13-0041

1.3 Conclusion

Based on the test results, the material change had no adverse impact on product performance.

1.4 Test Specimens

Specimens with the following part numbers were used for test:

Group No	SERIES PART	P/N	Wire Size	Material
1,2,3,4	250 FASTON INSUL. BOOT	926539-1 Rev. K	crimped with 2.0 Sq.mm FLRK wire	PA 66
5,6,7	BOOT INSULATOR FOR POSLOK TERM	154719 Re. AS	crimped with 2.0 Sq.mm FLRK wire	PA 66

Fig. 1

Note:

Color of housings may range from clear to green or yellow due to hygroscopic nature of resin. However it doesn't affect the Form, Fit and Function of the product as guaranteed by resin supplier and endorsed by our validation.

1.5 Test Sequence

1.5 Test dequence	Test Group (a)							
Test Items	1	2	3	4	5	6	7	
			-	Test Sequence	(b)			
Visual examination	1	1	1	1	1	1	1	
Contact Retention Force	2							
Insulation Resistance		2						
Dielectric Withstanding Voltage		3						
Thermal Cycling			3					
Accelerated Aging				3				
Millivolt Drop			2,4	2,4				
Electrical Requirement							2,4	
Mechanical requirement (Retention force)					2			
Durability						2		
Humidity							3	

Fig. 2

©2013 Tyco Electronics Corporation, a TE Connectivity Ltd. company All Rights Reserved

¹ of 4

^{*}Trademark. TE Connectivity, TE connectivity (logo), and TE (logo) are trademarks. Other logos, product and/or company names may be trademarks of their respective owners.

Note: a). Test group defined per customer requirement.

b). Numbers indicate sequence in which tests are performed.

c). Group 1,2,3,4 performed on 250 FASTON INSUL. BOOT Group 5,6,7 performed on BOOT INSULATOR FOR POSLOK TERM

1.6 Environmental Conditions

Unless otherwise stated, the following environmental conditions prevailed during testing:

Temperature: 15°C to 35°C Relative Humidity: 25% to 75%

2. SUMMARY OF TESTING

2.1. Initial Examination of Product

All specimens were visually examined and no evidence of physical damage detrimental to product performance was observed.

2.2. Contact Retention Force

Unit: N

Group	roup Number of data points	l (:ondition l		Contact Retention Force				
Croup		Condition	Туре	Max	Min	Ave		
1	5	Final	250FASTON INSUL. BOOT	261.93	152.55	198.56		

Fig 3

2.3 Insulation Resistance/ Dielectric Withstanding Voltage Insulation resistance and dielectric withstanding voltage result are shown in Fig 4

Unit: 10¹³O

						1111. 10 22		
(=roun	Number of	Condition	IR/DWV					
	data points	Condition	Туре	Max	Min	Ave		
2	E	Initial	250FASTON INSUL. BOOT	3.26 0.09 1.6		1.69		
2	5	Initial	250FASTON INSUL. BOOT	No flashover, no breakdow		akdown		

Fig 4

2.4 Millivolt Drop

All millivolt drop measurements were taken at 100 milliamperes maximum. Data summaries are shown in Fig 5. Unit: $m\Omega$

Group	Number of	Condition	Millivolt Drop				
O.oup	data points	Condition	Туре	Max	Min	Ave	
3	Initial		250FASTON INSUL. BOOT	0.55	0.52	0.53	
3	5	After Thermal Cycling	250FASTON INSUL. BOOT	0.70	0.62	0.64	
4		Initial	250FASTON INSUL. BOOT	0.54	0.51	0.53	
4	5	After Accelerated Aging	250FASTON INSUL. BOOT	0.65	0.63	0.64	

Fig 5

2.5. Thermal Cycling

No evidence of physical damage was visible as a result of exposure to thermal cycling.

Rev A 2 of 4

2.6. Accelerated Aging

No evidence of physical damage was visible as a result of exposure to Accelerated Aging.

2.7 Mechanical requirement (Retention force)

Retention force on BOOT INSULATOR FOR POSLOK TERM is shown in Fig 6.

Unit: N

Group	Number of	Condition	F	Retention fo	rce	
G. 5 up	data points	Condition	Туре	Max	Min	Ave
5	5	Initial	BOOT INSULATOR FOR POSLOK TERM	81.37	68.46	75.05

Fig 6

2.8 Durability

1st and 10th Engaging/Separating Force are shown in Fig 7

Unit: N

Group	Number of	Condition	Engaging/Separating Force				
J.54p	data points	Condition	Туре	Max	Min	Ave	
		Initial	Engaging force (BOOT	22.97	16.00	18.55	
6	5 Initi	Final	INSULATOR FOR POSLOK TERM)	21.95	18.92	19.93	
0		Initial	Separating Force (BOOT	22.39	14.69	17.78	
		Final	INSULATOR FOR POSLOK TERM)	19.71	17.35	18.63	

Fig 7

2.9 Electrical Requirement

Electrical requirement on contact resistance evaluation are shown in Fig.8

Unit: mΩ

Group	Number of data points	Condition	Electrical Requirement				
		Condition	Туре	Max	Min	Ave	
7	5 Initial Final	Initial	BOOT INSULATOR FOR	0.69	0.63	0.66	
		Final	POSLOK TERM	0.85	0.81	0.83	

Fig 8

2.10 Humidity

No evidence of physical damage was visible as a result of exposure to humidity.

3. TEST METHODS

3.1. Initial Examination of Product

All specimens were visually examined for evidence of physical damage detrimental to product performance

3.2 Measuring of Voltage Drop

Subject mated specimens to specified current measuring the voltage drop.

3.3 Durability

10 mating/unmating operations, record the initial and final engaging and separating force. (Phos. Bronze)

Rev A 3 of 4

3.4. Mechanical Requirement

Measure the contact retention force at the rate of 25mm/minute.

3.5. Contact Retention Force

Apply an axial load to contact at a rate of 25 mm / minute

3.6. Electrical Requirement

The millivolt drop, with the same set up when measured across the complete joint.

3.7. Accelerated Aging

Subject the test samples to 125℃ for 200h.

3.8. Thermal Cycling

Subject the samples to 5 cycles. Each cycle consists of:

a). 2 hrs at 125℃

b). 2 hrs : (40 ±2)℃at 95% RH

c). 2 hrs : (-30 ±2)℃

3.9. Humidity

Subject the samples to the condition:

- a). 3 hrs at (40+/-2)℃, relative humidity greater than 96%.
- b). Followed by 3 hrs cooling to (20 ±5)°, relative humidity greater than 96% RH.
- c). Followed finally by 3 hrs at (40 ±2)°, relative humidity greater than 96% RH.

4. CALIBRATION

4.1 Calibration Statement

All equipment containing a calibration number is calibrated and traceable through TE Connectivity (TE).

Rev A 4 of 4