

Engineering Report

FASTON RECEPTACLE FLAG HOUS5ING 3P .250 SERIES Material Evaluation

1. INTRODUCTION

1.1 Purpose

Testing was performed on the TE Connectivity FASTON RECEPTACLE FLAG HOUS5ING 3P .250 SERIES to evaluate a new material

1.2 Scope

This report covers the electrical, mechanical, and environmental performance of Faston receptacle housing. The specimens listed in Table 1 of paragraph 1.4 were subject to the test sequence outlined in Table 2 of paragraph 1.5. Testing was performed at the Shanghai Electrical Components Test Laboratory during 22Apr2018 to 08May2018. The associated test number is TP-18-00931.

1.3 Conclusion

Based on the test results, all specimens meet the specification. See summary of testing for more details. 1969706-x are qualified based on similarity.

1.4 Test Specimens

Specimens with the following part number as Table 1 were used for this test. Refer to table 1 for test specimen identification information.

Table 1

Test Group	Part No	Description	Qty.	Comments
	1-1969705-1	HSG, RECEPT, FLG FASTON, .250 SRS, 3 POS without moisture	6	
1	63963-1	FASTON 250 FLAG REC 14 AWG NPST	18	
2	1-1969705-1	HSG, RECEPT, FLG FASTON, .250 SRS, 3 POS without moisture	6	
	63963-1	FASTON 250 FLAG REC 14 AWG NPST	18	
3	1-1969705-1	HSG, RECEPT, FLG FASTON, .250 SRS, 3 POS with moisture	6	
	63963-1	FASTON 250 FLAG REC 14 AWG NPST	18	

1.5 Test Sequence

Specimens identified in table 1 were subjected to the test sequence outlined in Table 2.

Table 2-Test sequence

	Test Group			
Test	1	2	3	
	Test Sequence			
Examination of Product	1			
Dielectric withstanding Voltage	2			
Contact Intention Force		1	1	
Contact Retention Force		2	2	

Note:

- a). Test group defined per customer requirement;
- b). Numbers indicate sequence in which tests are performed.

1.6 Environmental Conditions

Unless otherwise stated, the following environmental conditions prevailed during testing:

Temperature: 15° C to 35° C Relative Humidity: 25° k to 75°

2. SUMMARY OF TESTING

2.1 Dielectric test, 3400V AC

No dielectric breakdown occurred due to the application of a test voltage potential of 3400V AC, refer to table 3

Table 3-leakage current, test set 1

Specimen ID	1-1	1-2	1-3	1-4	1-5	1-6
contact2-contact	NB	NB	NB	NB	NB	NB
contact1-housing	NB	NB	NB	NB	NB	NB
contact2-housing	NB	NB	NB	NB	NB	NB
contact3-housing	NB	NB	NB	NB	NB	NB

2.2 Contact insertion force test

Refer to table 4 and table 5 for contact insertion force summary data in pounds and figure 1 for typical force plots. Table 4 is the test data for sequence 2, housing without moisture; table 5 is the test data for sequence 3, housing with moisture. All recorded values were below the requirement of 7.0 lbf maximum for contact insertion per test request.

Table 4-Contact insertion force summary data in pounds, test set 2

Pounds	Contact insertion force
Minimum	4.10
Maximum	6.37
Mean	4.96
Standard Deviation	0.59
N=	18
Requirement	7.0lbf Max

Table 5-Contact insertion force summary data in pounds, test set 3

to o contact moortion force cummary data in podride, toot		
Pounds	Contact insertion force	
Minimum	3.80	
Maximum	6.44	
Mean	5.11	
Standard Deviation	0.73	
N=	18	
Requirement	7.0lbf Max	

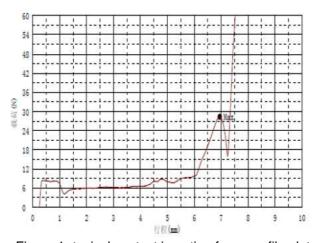


Figure 1- typical contact insertion force profile plot

Rev A 2 of 6

2.3 Contact retention force

Refer to table 6 and table 7 for contact retention force summary data in pounds and figure 2 for typical retention force profile plot. Table 6 is the retention force test data for sequence 2, housing without moisture; table 7 is the retention force test data for sequence 3, housing with moisture. All recorded values were up the requirement of 15.0 lbf Min for contact retention force per test request.

Table 6-Contact retention force summary data in pounds, test set 2

Б		
Pounds	Contact retention force	
Minimum	20.07	
Maximum	28.18	
Mean	22.91	
Standard Deviation	1.79	
N=	18	
Requirement	15.0 lbf Min	

Table 7-Contact retention force summary data in pounds, test set 3

able i Contact retention force cummary data in pounds, test se		
Contact retention force		
25.34		
33.89		
28.76		
2.67		
18		
15.0 lbf Min		

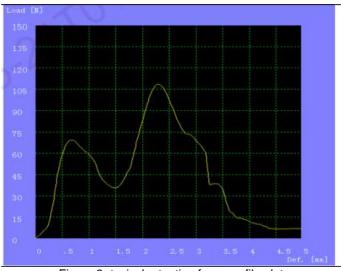


Figure 2- typical retention force profile plot

3. TEST PROCEDURES

3.1 Examination of Product

Visual Inspection: appearance, and function of specimens pursuant to the applicable inspection plan.

Requirements: Meets requirements of product drawing and no physical damage.

Test Method: EIA-364-18 B

3.2 Dielectric Strength

The test specimens were tested in the as-specified state. The test voltage shall be raised from zero to the specified value as uniformly as possible, at a rate of approximately 500 volts (AC or DC) per second. Dielectric withstanding voltage was measured separately between the closest adjacent contacts at 3400 V for 1 minute. Take picture of initial testing to make insurance of the same method is used. Measure and record the performance of the specimens. Execute visual check after test.

Rev A 3 of 6

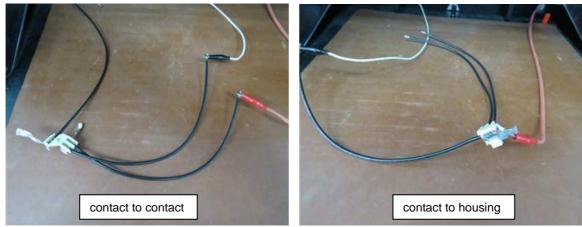


Figure 3- test setup of DWV

3.3 Contact insertion force

Execute visual check before test, and take picture. Mount test specimen with fixtures in a normal manner, and take picture. Edit test procedure according to test method then perform test. Test Condition: Measure the force required to insert contact into housing. Test Speed: 60 mm/min. Export test data and test curve, execute visual check and take picture after test. Refer to figure 5 for an image of the typical test setup. Testing was performed in accordance with EIS-364-05B

Figure 4 – typical contact insertion force setup

3.4 contact retention force

The housing was clamped to a free floating x/y and rotational table at the base of the tensile/compression machine. The wire of the terminal was clamped in an air jaw to the moveable crosshead of the tensile/compression machine. Force was then applied in an upward direction at a rate of 100mm/min until the terminal was fully removed from the housing. Refer to figure 7 for an image of typical test setup.

Rev A 4 of 6

Figure – 7 typical retention force setups

4. CALIBRATION

4.1 Calibration Statement

All equipment containing a calibration number is calibrated and traceable through TE Connectivity (TE).

4.2 Equipment List
Equipment Name
Dielectric Strength Tester (Chroma 19073)
Load Tester (MAX-1KN-H-2 500N)

Calibration Number E-00057 E-00017

5. VALIDATION

Requested by:		
	/	/
Product Engineer		
TE Connectivity India Pvt Ltd.		
Prepared by:		
	/	/
Test Engineer		
Shanghai Electrical Components Test Lab	•	
Approved by:		
	_/	/
Manager		
Shanghai Electrical Components Test Lab		

Rev A 5 of 6