ELCON Mini cable-to-board power connector system, Four Position

1. INTRODUCTION

1.1 Purpose

Testing was performed on the ELCON Mini four position cable-to-board connector system, using connectors with the optional shield, and cable connectors with the optional shield to determine its conformance to requirements of Design Objectives 108-19429, Revision B.

1.2 Scope

This report covers the electrical, mechanical, and environmental performance of the cable connector plug (part number 2173168-1, 2173200-1) and board connector (part number 2173211-1, 2173132-1). Testing was performed at the Engineering Assurance Product Testing Laboratory.
1.3. Conclusion

The cable connector plug (part number 2173168-1, 2173200-1) and board connector (part number 2173211-1, 2173132-1) conformed to the electrical, mechanical, and environmental performance requirements of Design Objectives 108-19429, Revision B.
1.4. Environmental Conditions

Unless otherwise stated. The following environmental conditions prevailed during testing
Temperature: 15 to $35^{\circ} \mathrm{C}$
Relative Humidity: 25 to 75%

2. PRODUCT QUALIFICATION AND REQUALIFICATION TEST SEQUENCE

2.1 Sample Description

The tests were executed on 25 pieces of the board-connector, P/N 2173211-1, 2173132-1 with 20 counter-part cable-connector plug P/N 2173168-1, 2173200-1. All test-groups consist of 5 connector pairs.

2.2 Test Procedures

IEC 60512-1-1:
Test 1a

IEC 60512-2-1:
Test 2a

IEC 512-2-4a:

Visual examination:

The test samples were visually inspected under a stereomicroscope, at a 10x magnification, with suitable illumination.

Termination resistance:

The termination resistance was measured with an open circuit voltage of 20 mVolt and a maximum current of 100 mA DC.

Voltage proof: (Unmated)
This measurement was done with a high voltage tester. The test duration was one minute at 1120 V rms.

IEC 60512-3-1:
Test 3a

IEC 60512-5-1:
Test 5a

IEC 60512-9-2:
Test 9b

IEC 60512-5-2:
Test 5b

IEC 60512-13-2:
Test 13b

Insulation resistance: (Unmated)

This measurement was done with a programmable electrometer. The measuring voltage was 100 Volt during one minute.

Temperature rise:

Two diagonal oriented contacts were charged with a test current of successively 22, 25 and 30A. This current was maintained for a stabilization period of 1 hour minimum. The temperature measurements were, inside the connector, done by means of a thermocouple.

Electrical load and temperature:

With this current, the samples were subjected to a temperature of $85^{\circ} \mathrm{C}$ during 500 hrs .

Current-temperature derating curve:

The test samples were charged with a test current of successively 22, 25 and 30A . This current was maintained for a stabilization period of 1 hour. After stabilization, the temperature was measured. Then the current through all contacts was increased in steps of 1A, and every time after stabilization the temperature was measured until a $\Delta \mathrm{t}$ of 30 K was reached.

Shield contact spring force:

At a deflection of 0.26 mm , the contact force of the shield contacts was measured.

Mating / unmating forces:

The test samples were mounted on a push-pull tester.
During a mechanical operation, at a rate of 10 mm per minute, the mating and unmating forces were measured.

Polarization method:

In all wrong mating manners, a force of 250 N was applied to the connector for 10 seconds. This should not lead to any damages.

Latch activation force:

The force to activate the latch was measured.

Mechanical operation (enduration):

The samples were mated and unmated for 50 times at a rate of 500 cycles per hour.

Contact retention in insert:

The contact retention force per contact was measured on a push-pull tester, with a force of max. 50 N .

Side load, 4 directions:

A force of 40 N was applied to the samples. This force was maintained during 10 seconds.

Locking latch strengths:

A force of 100 N was applied on the cable connector in unmating direction, with the locking feature latched.

Board connector mounting force:

The force to mount the board connector was measured.

IEC 60512-17-3

IEC 60512-6-4:
Test 6d

IEC 60512-6-3:
Test 6c

IEC 60512-11-4:
Test 11e

IEC 60512-11-1:

IEC 60512-11-3:
Test 11 c

Straight cable pull:

The straight cable pull force was measured on a tensile tester. An axial load of 80 N was applied on the cable of the cable connector during 10 seconds.

Vibration:

The samples were mounted on a vibration table.
The frequency from $10-500-10 \mathrm{~Hz}$ was traversed with one octave per minute.
Below the cross-over frequency the samples were vibrated with an amplitude of 0.75 mm , above that frequency with an acceleration of 10 g . The duration was 60 minutes in each of the three mutually perpendicular directions. The samples were provided with a circuit to detect interruptions of continuity longer than 1 micro-second.

Shock test:

Acceleration 50 g , half sine wave pulses of 11 msec .
6 shocks in each of three mutually perpendicular directions were executed.
The samples were provided with a circuit to detect interruptions of continuity longer than 1 micro-second.

Rapid change of temperature:

The samples were subjected to a rapid change of temperature test with the following parameters:
One cycle consists of:
Upper temperature $\quad: 90^{\circ} \mathrm{C}$ for 30 minutes.
Lower temperature : $-40^{\circ} \mathrm{C}$ for 30 minutes.
Condition : mated.
Number of cycles :5

Climatic sequence:

The samples were subjected to the following tests:
Dry heat $\quad: 90 \rightarrow C, 16$ hours.
Damp heat cyclic: $25 \rightarrow$ C/ $55 \rightarrow$ C, RH 93%, 24 hours, 1 cycle.
Cold $\quad:-40 \rightarrow$ C, 2 hours.
Damp heat cyclic: 25-C/ 55-C, RH 93\%, 24 hours, 5 cycles.
Condition : mated.

Damp heat, steady state:

The samples were subjected to a damp heat steady state test under the following conditions:
Temperature $: 40^{\circ} \mathrm{C}$.
Rel. humidity : 95%.
Condition : mated.
Duration : 21 days.
TEC-109-201:
Method C

Resistance to soldering heat:

Samples were subjected to an IR reflow soldering curve, under the following conditions:

- Average ramp rate: $3^{\circ} \mathrm{C}$ per second maximum
- Preheat temperature (minimum): $150^{\circ} \mathrm{C}$
- Preheat temperature (maximum): $200^{\circ} \mathrm{C}$
- Preheat time: 60 to 180 seconds
- Ramp to peak: $3^{\circ} \mathrm{C}$ per second maximum
- Time over liquidus ($217^{\circ} \mathrm{C}$): 60 to 150 seconds
- Peak temperature: $260+0^{\circ}-5^{\circ} \mathrm{C}$
- Time within $5^{\circ} \mathrm{C}$ of peak: 20 to 40 seconds
- Ramp - cool down: $6^{\circ} \mathrm{C}$ per second maximum
- Time $25^{\circ} \mathrm{C}$ to peak: 8 minutes maximum

2.2 Test Sequence

Test-group 1:

- Visual examination
- Termination resistance
- Temperature rise
- Termination resistance
- Electrical load and temperature
- Termination resistance
- Temperature rise
- Termination resistance
- \quad Side-load in 4 directions
- Visual examination
- Locking latch strength
- Visual examination
- \quad Cable pull force out crimp ferrule
- Visual examination
- Insertion force during wrong polarization
- Visual examination
- \quad Contact-retention (cable-connector)
- Visual examination
- Termination resistance
- Visual examination

Test-group 3:

$\begin{array}{ll}- & \text { Visual examination } \\ - & \text { Termination resistance }\end{array}$

- \quad Rapid change of temperature
- Termination resistance
- Vibration sinusoidal
- Physical shock
- Termination resistance
- Visual examination

Test-group 2:

- Visual examination
- Shield contact spring force
- Insertion/withdrawal force (no latch)
- Termination resistance
- Mechanical operation
- Termination resistance
- \quad Shield contact spring force
- Insertion/withdrawal force (no latch)
- Termination resistance
- Insertion/withdrawal force (no latch)
- \quad Shield contact spring force
- Termination resistance
- Visual examination

Test-group 4:

- Visual examination
- Termination resistance
- Insulation resistance
- Voltage proof
- Climate sequence
- Termination resistance
- Insulation resistance
- Voltage proof
- Damp/heat steady-state
- Termination resistance
- Insulation resistance
- Voltage proof
- Visual examination

Test-group 5:

- Visual examination
- Mounting-force board-connector
- \quad Resistance to soldering heat (Board-connector)
- Visual examination

2.3 Equipment Used

Equipment	Producer	Type	Series Nb	Cal. Due
Micro-ohmmeter	Hioki	3560	110202069	Mar-14.
Electrometer	Keithley	6517 A	1068400	Mar-14.
High voltage tester	Sefelec	DXS506	1109582	Dec-13.
MultiMeter/DAS 2	Keithley	2700	1315592	Mar-14.
Switching Module 2	Keithley	7708	1306206	Mar-14.
Oven	Binder	FED 53-E2	$12-05379$	Mar-14.
Tensile tester	MTS	$400 M$	$165811-20$	Oct-14.
Load cell	MTS	500 N	2239	Oct-14.
Vibration control	DataPhysics	3788		
Vibrator	Ling+B\&K	PA2000	S1165-002	
Accero meter	MMF	ks 94-01	723	Apr-14.
Climatic chamber	Weiss	$80-200 D U-S T$	$224 / 17413$	Jan-14.
Climatic chamber	CTS	C-65/100	087130	Jan-14.
Climatic chamber	CTS	CTSMT	EasyFlow	$6 / 30$
Hot air reflow oven	AllSMT			Jan-14

2.4 Results:

Test-group 1:

Low level contact resistance power contacts: the measured values after any of the executed tests do not exceed the requirement of $3 \mathrm{~m} \Omega$ max. The highest measured value was $1.38 \mathrm{~m} \Omega$.

Low level contact resistance shield contacts: the measured values after any of the executed tests do not exceed the requirement of $10 \mathrm{~m} \Omega$ max initially and $20 \mathrm{~m} \Omega$ max finally. The highest measured value was 2.64 $\mathrm{m} \Omega$.

Latch activation force: see the table below.

All values represented in Newton.			
Product name:	4 pos shielded power		
Column	Group	Lot	Displacement (mm)
$\mathbf{- 1}:$	1		$1-5$
Sample	$\mathbf{- 1}$		
$\mathbf{1}$	15.60		
$\mathbf{2}$	21.10		
$\mathbf{3}$	17.56		
$\mathbf{4}$	17.41		
$\mathbf{5}$	13.69		
Max.	$\mathbf{2 1 . 1 0}$		
Min.	$\mathbf{1 3 . 6 9}$		
Mean.	$\mathbf{1 7 . 0 7}$		

Temperature rise: at the max current load (22,25 and 30A) the temp rise is within the requirement of Δt max $\leq 30^{\circ} \mathrm{C}$.
-Derating curve:

Connector with 14AWG cable (with shield)

Connector with 12AWG cable (without shield)

Connector with 10AWG cable (without shield)

- Side load in 4 directions,
- Locking latch strength,
- Cable pull force out crimp ferrule,
- Insertion force during wrong polarization,
- Contact-retention (cable-connector):
after subjection to these impacts, no aspects that can be detrimental for normal functionality of the products have been determined.

Test-group 2:

Low level contact resistance power contacts: the measured values after any of the executed tests do not exceed the requirement of $3 \mathrm{~m} \Omega$ max. The highest measured value was $0.98 \mathrm{~m} \Omega$.

Low level contact resistance shield contacts: the measured values after any of the executed tests do not exceed the requirement of $10 \mathrm{~m} \Omega$ max initially and $20 \mathrm{~m} \Omega$ max finally. The highest measured value was 2.53 $\mathrm{m} \Omega$.

Shield contact spring force measurements:
Note: 'after M.O': after mechanical operation.

All values represented in Newton.			
Product name:		4pos shielded power	
Column	Group	Lot	Test
-1-:	2	1-5	initial
-3-:	2	1-5	after M.O.
-1-:	2	1-5	final
Sample	-1-	-2-	-3-
s1	1.81	1.54	1.70
s1	1.71	1.73	1.64
s2	1.75	1.62	1.68
s2	1.69	1.81	1.52
s3	1.73	1.70	1.60
s3	1.67	1.75	1.57
s4	1.78	1.57	1.58
s4	1.70	1.76	1.58
s5	1.78	1.58	1.61
s5	1.74	1.72	1.63
Max.	1.81	1.81	1.70
Min.	1.67	1.54	1.52
Mean.	1.74	1.68	1.61

Insertion/withdrawal forces (no latch):

All values represented in Newton.						
Product name:		4 pos shielded power				
Column	Group	Lot	Operation	Test		
-1-:	2	1-5	Mating	initial		
-2-:	2	1-5	Unmating	initial		
-3-:	2	1-5	Mating	after MO		
-4-:	2	1-5	Unmating	after MO		
-5-:	2	1-5	Mating	final		
-6-:	2	1-5	Unmating	final		
Sample	-1-	-2-	-3-	-4-	-5-	-6-
1	56.96	50.45	34.63	33.22	31.92	28.91
2	69.84	57.14	41.83	31.48	42.66	32.62
3	66.36	57.39	36.44	28.78	37.19	34.21
4	50.86	47.09	40.65	33.89	40.07	31.95
5	67.18	58.78	41.91	35.24	44.90	38.11

Test-group 3:

Low level contact resistance power contacts: the measured values after any of the executed tests do not exceed the requirement of $3 \mathrm{~m} \Omega$ max. The highest measured value was $0.98 \mathrm{~m} \Omega$.

Low level contact resistance shield contacts: the measured values after any of the executed tests do not exceed the requirement of $10 \mathrm{~m} \Omega$ max initially and $20 \mathrm{~m} \Omega$ max finally. The highest measured value was 3.67 $\mathrm{m} \Omega$.

Vibration and mechanical shock: no interruptions of continuity with a duration of $>1 \mu \mathrm{sec}$ have been detected.

Test-group 4:

Low level contact resistance power contacts: the measured values after any of the executed tests do not exceed the requirement of $3 \mathrm{~m} \Omega$ max. The highest measured value was $1.77 \mathrm{~m} \Omega$.

Low level contact resistance shield contacts: the measured values after any of the executed tests do not exceed the requirement of $10 \mathrm{~m} \Omega$ max initially and $20 \mathrm{~m} \Omega$ max finally. The highest measured value was 2.18 $\mathrm{m} \Omega$.

Insulation resistance:
Power contacts:

All values represented in Ohms.			
Product name:		4pos shielded power	
Column.	Group	Lot	Test
-1-:	4	1-5	Initial
-1-:	4	1-5	damp heat
-1-:	4	1-5	final
	-1-	-2-	-3-
1	$1.03 \mathrm{E}+12$	$3.77 \mathrm{E}+11$	$5.73 \mathrm{E}+11$
2	$4.53 \mathrm{E}+11$	$3.97 \mathrm{E}+10$	$7.31 \mathrm{E}+10$
3	$3.04 \mathrm{E}+11$	$4.34 \mathrm{E}+10$	$8.29 \mathrm{E}+10$
4	$1.64 \mathrm{E}+12$	$1.92 \mathrm{E}+11$	$2.47 \mathrm{E}+11$
5	$3.75 \mathrm{E}+10$	$8.19 \mathrm{E}+10$	$2.76 \mathrm{E}+08$
Max.	$1.64 \mathrm{E}+12$	$3.77 \mathrm{E}+11$	5.73E+11
Min.	$3.75 \mathrm{E}+10$	$3.97 \mathrm{E}+10$	$2.76 \mathrm{E}+08$
Mean.	$6.95 \mathrm{E}+11$	$1.47 \mathrm{E}+11$	$1.95 \mathrm{E}+11$

Shield:

All values represented in Ohms.			
Product name:		4pos shielded power	
Column.	Group	Lot	Test
-1-:	4	1-5	Initial
-1-:	4	1-5	damp heat
-1-:	4	1-5	final
	-1-	-2-	-3-
1	$2.35 \mathrm{E}+10$	$3.76 \mathrm{E}+11$	$2.28 \mathrm{E}+11$
2	$2.05 \mathrm{E}+11$	$2.09 \mathrm{E}+11$	$3.60 \mathrm{E}+10$
3	$2.39 \mathrm{E}+10$	$2.97 \mathrm{E}+10$	$3.82 \mathrm{E}+10$
4	$2.19 \mathrm{E}+11$	$2.29 \mathrm{E}+11$	$3.30 \mathrm{E}+11$
5	$1.23 \mathrm{E}+11$	$1.33 \mathrm{E}+10$	$1.17 \mathrm{E}+11$
Max.	2.19E+11	$3.76 \mathrm{E}+11$	$3.30 \mathrm{E}+11$
Min.	$2.35 \mathrm{E}+10$	$1.33 \mathrm{E}+10$	$3.60 \mathrm{E}+10$
Mean.	1.19E+11	$1.71 \mathrm{E}+11$	$1.50 \mathrm{E}+11$

Voltage proof: in none of the cases flash-over or break-through occurred at a voltage of 1120 Vrms .

Test-group 5:

Mounting-force board-connector:

All values represented in Newton.		
Product name:	4pos shielded power	
Column	Group	
$-1-:$	5	Mounting force
Sample	$\mathbf{- 1}$	
$\mathbf{1}$	6.77	
$\mathbf{2}$	8.51	
3	7.70	
$\mathbf{4}$	8.38	
$\mathbf{5}$	8.31	
Max.	8.51	
Min.	6.77	
Mean.	7.93	

