

Rev B

Power Versa-Lock Connector Systems

1. INTRODUCTION

1.1 Purpose

Testing was performed on Power Versa-Lock connectors to determine its conformance related to the requirements of product specification 108-143081 Rev.15.

Scope of the test is the qualification with Power Versa-Lock product line. Not all test according to 108-143081 have been performed. Test group 12 was not tested because the housings submitted were not the glow wire version.

1.2 Scope

This report covers the electrical, mechanical and environmental performance of Power Versa-Lock connectors. Testing was performed at the Shanghai Electrical Components Test Laboratory between Mar. 4th, 2020 and May. 12th, 2020. The associated test number is TP-19-03264 and TP-20-00661.

1.3 Conclusion

Based on the test results, all tests meet the requirement according to applicant's requirement and product specification 108-143081 Rev.15.

1.4 Test Specimens

Specimens with the following part numbers were used for test:

Table 1										
P/N	Description	Quantity (pcs)	Note							
1-2325350-2	PWR VERSA-LOCK CAP, 1X2 KEY A	180	2P							
1-2325350-3	WR VERSA-LOCK CAP, 1X3 KEY A	90	3P							
1-2332040-2	PWR VERSA-LOCK PLUG, 1X2 KEY A	180	2P							
1-2332040-3	PWR VERSA-LOCK PLUG, 1X3 KEY A	90	3P							
1-2336229-6	PWR VERSA-LOCK PLUG, 2X3 KEY A	135	6P							
1-2336231-6	PWR VERSA-LOCK TL CAP, 2X3 KEY A	135	6P							
1-2345728-1	PWR VERSA-LOCK PLUG, 1X1 KEY A	150	1P							
1-2345729-1	PWR VERSA-LOCK FH CAP, 1X1 KEY A	150	1P							
2-2325350-2	PWR VERSA-LOCK CAP, 1X2 KEY B	30	2P							
2-2332040-2	PWR VERSA-LOCK PLUG, 1X2 KEY B	30	2P							
2325347-1	PWR VERSA-LOCK INTERFACE SEAL, 1X1	75	1P							
2325347-2	PWR VERSA-LOCK INTERFACE SEAL, 1X2	120	2P							
2325347-3	PWR VERSA-LOCK INTERFACE SEAL, 1X3	120	3P							
2325349-1	PWR VERSA-LOCK REAR SEAL, 1X1, 2.45-3.60	150								
2325349-2	PWR VERSA-LOCK REAR SEAL, 1X2, 2.45-3.60	240								
2325349-3	PWR VERSA-LOCK REAR SEAL, 1X3, 2.45-3.60	270								
2329906-1	PWR VERSA-LOCK TAB, 18-20, 2X22 AWG	795								
2329907-1	PWR VERSA-LOCK SEAL TAB, 14-16 AWG	510								
2329908-1	PWR VERSA-LOCK SEAL TAB, 18-20 AWG	510								
2329909-1	PWR VERSA-LOCK TAB, 22-26 AWG	45								

©2015 Tyco Electronics Corporation, a TE Connectivity Ltd. company All Rights Reserved | Indicates Change

2329912-1	PWR VERSA-LOCK RECPT, 18-20, 2X22 AWG	795	
2329914-1	PWR VERSA-LOCK SEAL RECPT, 18-20 AWG	510	
2329915-1	PWR VERSA-LOCK RECPT, 22-26 AWG	45	
2329916-1	PWR VERSA-LOCK SEAL RECPT, 14-16 AWG	510	
2334614-1	PWR VERSA-LOCK BACK COVER 1P	150	
2334614-2	PWR VERSA-LOCK BACK COVER 2P	240	
2334614-3	PWR VERSA-LOCK BACK COVER 3P	210	
2337218-6	PWR VERSA-LOCK TPA, 2X3	100	

1.5 Test Sequence

The specimens listed in Table 1 were subjected to the test sequences listed in Table 2.

					Tab	le 2						
		Test Group (a)										
Test Item	1	2	3	4	5	6	7	8	9	10	11	12
						Т	est Seq	uence (l))			
Examination of Product	1, 9	1, 5	1, 9	1, 4	1, 4	1, 4	1, 5	1, 5	1, 5	1,5	1, 3	1, 3
Low Level Contact Resistance	3, 7	2, 4					2, 4	2, 4	2, 4	2, 4		
Insulation Resistance			2, 7									
Dielectric Withstanding Voltage			3, 8									
Temperature Rise vs. Current		3										
Sinusoidal Vibration	5									3		
Mechanical Shock	6											
Durability	4											

Connector Mating Force	2									
Connector Unmating Force	8									
Crimp Tensile Strength									2	
Housing Panel Retention Force				2						
Housing Lock Strength				3						
Contact Insertion Force			2							
Contact Retention Force			3							
Thermal Shock		4								
Humidity- Temperature Cycling		5					3(c)			
Temperature Life								3		
Water Immersion					2					
Dust Tightness					3					
Resistance to Cold		6								
Salt Spray						3				
Glow Wire										2

Note: a). Test group defined per customer requirement

b). Numbers indicate sequence in which tests are performed.

c). Connectors for these tests shall be preconditioned with 5 durability cycles.

1.6 Environmental Conditions

Unless otherwise stated, the following environmental conditions prevailed during testing: Temperature: 15°C to 35°C Relative Humidity: 25% to 75%

2. TEST PROCEDUES

2.1 Visual Examination of Product Before test, a certificate of conformance was issued stating that all specimens in this test package were produced, inspected, and accepted as conforming to product drawing requirements, and were manufactured using the same core manufacturing processes and technologies as production parts. After test, there shall be no corrosive influence on the performance and no physical damage that would impair product performance. Test Method: EIA-364-18.

2.2. Low Level Contact Resistance

Subject contacts assembled in a housing to 20mV (max.) open circuit at 10 mA. Subtract the resistance of the wire from the measurement. Connection per Figure 2. Requirement: Initial: 10 mΩ (milliohm) maximum Final: 20 mΩ (milliohm) maximum

Test Method: EIA-364-23.

- 2.3. Insulation Resistance Apply 500 VDC and hold for 2 minutes. Test between contacts in adjacent circuits and between housing and contacts in a mated connector. Requirement: Initial: 1000 MΩ minimum Final: 500 MΩ minimum Test Method: EIA-364-21.
- 2.4. Dielectric Withstanding Voltage

Hold at 2.2 kV AC at sea level for 1 minute. Test between contacts in adjacent circuits and between housing and all contacts in a mated connector.

Requirement: 1 minute hold without a creep discharge or flashover. Current Leakage: 5 mA (maximum) Test Method: EIA-364-20, Method A, Condition 1.

- 2.5. Temperature Rise vs. Current Measure the temperature rise above ambient created by the energizing current. Measurement must be taken at a place where there is no influence from air convection. Contacts to be assembled in housing with all circuits connected. The thermocouple is to be attached to the contact in the center circuit. Stabilize at a single current level until 3 readings at 5 minute intervals are within 1°C. Requirement: 30°C maximum when subjected to rated current Test Method: EIA-364-70, Method 1
- 2.6. Sinusoidal Vibration
 Subject mated connector to 10-55-10 Hz traversed in 1 minute at 1.52 mm amplitude. Apply 2 hours in each of 3 mutually perpendicular planes. 100 mA applied.
 Requirement: No electrical discontinuity greater than 1 µs shall occur.
 No physical damage that would impair product performance.
 Test Method: EIA-364-28, Condition 1.
- 2.7. Mechanical Shock
 Subject mated connector to 50G's half -sine shock pulse of 11 ms duration. 3 drops each to normal and reversed
 directions of X, Y and Z axis. Total of 18 drops.
 Requirement: No electrical discontinuity greater than 1 µs shall occur.
 No physical damage that would impair product performance.
 Test Method: EIA-364-27, Condition A.
- 2.8. Durability

Manually mate and unmate connectors for 25 cycles. Requirement: No physical damage that would impair product performance. Test Method: EIA-364-09.

- 2.9. Connector Mating Force Measure the force required to mate connectors with locking latches. Operation Speed: 25.4 mm/min. Requirement: Unsealed: (7.42 x # of Positions) N (maximum) Sealed: (18 x # of Positions) N (maximum) Test Method: EIA-364-13, Method A.
- 2.10. Connector Unmating Force Measure the force required to unmate connectors without locking latches. Operation Speed: 25.4 mm/min. Requirement: (1.25 x # of Positions) N (minimum) Test Method: EIA-364-13, Method A.
- 2.11. Crimp Tensile Strength
 Apply an axial pull force to the crimped wire. Contact to be secured to the tester. Insulation barrel crimp to be disabled. Operation Speed: 25.4 mm/min.
 Requirement: See table 9.
 Test Method: EIA-364-08.
- 2.12. Housing Panel Retention Force Measure panel retention force using a panel cut with nominal dimensions as specified in the TE customer drawing. Operation Speed: 100 mm/min. Requirement: 98N Minimum Test Method: EIA-364-97.
- 2.13. Housing Locking Strength Ensure that locking latches are fully engaged. Operation Speed: 13 mm/min. Requirement: 66.7 N minimum Test Method: EIA-364-98.
- 2.14. Contact Insertion Force Measure the force required to insert contact into housing. Requirement: 13.3N maximum Test Method: EIA-364-05.
- 2.15. Contact Retention Force
 Measure the axial force required to remove contact from the housing with and without a TPA accessory. Operation
 Speed: 25.4 mm/min.
 Requirement: With TPA accessory: 66.7 N minimum
 Without TPA accessory: 53.4 N minimum
 Test Method: EIA-364-29.
- 2.16. Thermal Shock

Subject mated specimens to 25 cycles between - 55°C and 85°C with 30 minute dwell time at temperature extremes and 5 minute transition (maximum) between temperatures. Requirement: No physical damage that would impair product performance. Test Method: EIA-364-32, Method A, Test Condition I.

2.17. Humidity-Temperature Cycling

Subject mated specimen to 10 cycles between 25°C and 65°C at 80-100% RH. Measurements to be recorded after specimens are held for 3 hours at ambient temperature and humidity. 1 cycle is 24 hours. Requirement: No physical damage that would impair product performance. Test Method: EIA-364-31, Method IV.

2.18. Temperature Life

Subject mated connector to 105°C for a duration of 96 hours. Measurements to be recorded after specimens are held for 3 hours at ambient temperature and humidity.

Requirement: No physical damage that would impair product performance. Test Method: EIA-364-17 Method A

2.19. Water Immersion

Immerse mated samples in water for 30 minutes with the lowest point of the sample 1 meter below the surface. Tank must be 8 inches (minimum) in diameter. Requirement: No ingress of water or physical damage that would impair product performance.

Test Method: IEC 60529, Test Conditions per IP67

2. 20. Dust Tightness

Subject mated connector to 8 hours of circulating talcum powder dust. 2 kg of power per cubic meter of test chamber shall be used. Requirement: No ingress of dust or physical damage that would impair product performance. Test Method: IEC 60529, Test Conditions per IP67.

2. 21. Resistance to Cold

Subject mated connector to $-30^{\circ}C \pm 2^{\circ}C$ for 96 hours. Requirement: No physical damage that would impair product performance. Test Method: IEC 60512-11-10.

2. 22. Salt Spray

Subject mated connectors to $5\pm1\%$ salt concentration for 48 hours. Requirement: No physical damage that would impair product performance. Test Method: EIA-364-26, Condition B.

3. SUMMARY OF TESTING

- 3.1 Visual Examination All group specimens were visually examined and no evidence of physical damage detrimental to product performance was observed.
- 3.2. Low Level Contact Resistance Test result are shown in Table 3.

Table 3

			Tuble					Unit: mΩ
Group	Quantity	Specimen Description	Condition	Low Leve	I Contact R	esistance	Requirement	Judgment
Gloup	Quantity	Specimen Description	Condition	Max.	Min.	Ave.	Requirement	Judginent
	15	1P Unsealed		3.10	2.65	2.85	10mΩ Max.	Meet spec.
	15	3P Unsealed	- -	3.03	2.33	2.68	10mΩ Max.	Meet spec.
	15 6P Unsealed	Initial	3.33	1.96	2.62	10mΩ Max.	Meet spec.	
	15	1P Sealed	Initial	2.23	2.02	2.10	10mΩ Max.	Meet spec.
	15 3P Sealed		2.17	1.82	2.01	10mΩ Max.	Meet spec.	
1	15	6P Sealed		2.69	1.30	2.08	10mΩ Max.	Meet spec.
	15	1P Unsealed		6.36	2.48	4.46	20mΩ Max.	Meet spec.
	15	3P Unsealed	After Durability,	4.77	2.62	3.27	20mΩ Max.	Meet spec.
	15	6P Unsealed	Vibration and Mechanical	5.79	3.02	4.06	20mΩ Max.	Meet spec.
	15	1P Sealed	Shock	4.43	2.25	3.27	20mΩ Max.	Meet spec.
	15	3P Sealed		3.63	1.60	2.70	20mΩ Max.	Meet spec.

	1		1		1		1	1
	30	1P with cover Sealed		2.22	1.88	2.02	10mΩ Max.	Meet spec.
	30	1P no cover Unsealed		2.40	1.43	1.90	10mΩ Max.	Meet spec.
	30	2P with cover Sealed		2.04	1.65	1.82	10mΩ Max.	Meet spec.
	30	3P with cover Sealed	Initial	3.27	1.13	2.08	10mΩ Max.	Meet spec.
	30	2P with cover Sealed		2.67	1.09	1.91	10mΩ Max.	Meet spec.
	30	3P with cover Sealed		2.27	1.59	1.84	10mΩ Max.	Meet spec.
_	30	6P Unsealed with TPA		2.38	1.52	1.80	10mΩ Max.	Meet spec.
2	30	1P with cover Sealed		2.97	1.61	2.28	20mΩ Max.	Meet spec.
	30	1P no cover Unsealed		2.45	1.53	2.07	20mΩ Max.	Meet spec.
	30	2P with cover Sealed	After	2.01	1.52	1.76	20mΩ Max.	Meet spec.
	30	3P with cover Sealed	Temperature	2.67	1.67	1.97	20mΩ Max.	Meet spec.
	30	2P with cover Sealed	Rise	2.09	1.57	1.78	20mΩ Max.	Meet spec.
	30	3P with cover Sealed		2.64	1.49	1.88	20mΩ Max.	Meet spec.
	30	6P Unsealed with TPA	¥	2.29	1.58	1.78	20mΩ Max.	Meet spec.
	10	2P with sealed terminals, no seals applied	Initial	2.34	1.62	2.15	10mΩ Max.	Meet spec.
7	10	6P with unsealed terminals		4.08	1.93	2.70	10mΩ Max.	Meet spec.
7	10	2P with sealed terminals, no seals applied	After Salt Spray	5.97	2.56	3.39	20mΩ Max.	Meet spec.
	10	6P with unsealed terminals		9.2	2.92	5.13	20mΩ Max.	Meet spec.
	10	2P with sealed terminals, no seals applied	Initial	2.64	1.60	2.32	10mΩ Max.	Meet spec.
8	10	6P with unsealed terminals		3.60	2.06	2.68	10mΩ Max.	Meet spec.
0	10	2P with sealed terminals, no seals applied	After Humidity and Temperature	5.01	2.19	3.38	20mΩ Max.	Meet spec.
	10	6P with unsealed terminals	Cycling	4.60	1.87	3.34	20mΩ Max.	Meet spec.
	10	2P with sealed terminals, no seals applied	Initial	2.96	1.65	2.36	10mΩ Max.	Meet spec.
0	10	6P with unsealed terminals		3.24	1.83	2.76	10mΩ Max.	Meet spec.
9	10	2P with sealed terminals, no seals applied	After Temperature	5.46	2.7	3.72	20mΩ Max.	Meet spec.
	10	6P with unsealed terminals	Life	7.99	2.87	4.36	20mΩ Max.	Meet spec.
	10	2P with sealed terminals, no seals applied	Initial	3.35	2.15	2.58	10mΩ Max.	Meet spec.
10	10	6P with unsealed terminals		3.98	2.47	3.14	10mΩ Max.	Meet spec.
10	10	2P with sealed terminals, no seals applied	After Vibration	5.03	2.64	3.44	20mΩ Max.	Meet spec.
	10	6P with unsealed terminals		6.94	2.81	4.18	20mΩ Max.	Meet spec.

3.3. Insulation Resistance

Test result are shown in Table 4.

	Table 4											
							Ui	nit: 10¹¹Ω				
Croup	Quantity	Specimen	Condition	Insulat	tion Resist	stance	Poquiromont	ludgmont				
Group	Quantity	Description	Condition	Max.	Min.	Ave.	Requirement	Judgment				
	15	1P sealed terminals,		9.21	0.90	3.12	1000MΩ min.	Meet spec.				
	15	no seals applied	Initial	9.21	0.90	5.12		Meet spec.				
	15	6P unsealed	Innuar	13.35	0.85	4.34	1000MΩ min.	Meet spec.				
3	15	terminals		13.35	0.85	4.34	100010122 11111.	Meet spec.				
5	15	1P sealed terminals,	After Thermal Shock	6.33	0.12	2.00	500MΩ min.	Meet spec.				
	15	no seals applied	Humidity and Temperature		0.12	2.00	000 0 22 11111.	Meet spec.				
	15	6P unsealed	Cycling	2.65	0.05	0.87	500MΩ min.	Meet spec.				
	15	terminals	Cycling	2.65	55 0.05	0.87	00010122 11111.	weet spec.				

3.4. Dielectric Withstanding Voltage Test result are shown in Table 5.

			Tal	ble 5				
Group	Quantity	Specimen	Condition	Dielectric	Withstandi	ng Voltage	Requirement	Judgment
Gloup	Quantity	Description	Condition	Max.	Min.	Ave.	Requirement	Judgment
	15	1P sealed terminals,		No break	down no f	lashover		Meet spec.
	10	no seals applied	Initial	No breakdown, no flashover.				Meet Spee.
	15	6P unsealed	Initial	No breakdown, no flashover. No breakdown, no flashover.				Meet spec.
3	10	terminals					No breakdown or flashover.	meet spec.
5	15	1P sealed terminals,	After Thermal Shock					Meet spec.
	10	no seals applied	Humidity and					meet spec.
	15	6P unsealed	Temperature Cycling	No break	down no f	lashover		Meet spec.
	terminals		Temperature Oyening	No breakdown, no flashover.				meet spec.

3.5. Temperature Rise vs. Current Test result are shown in Table 6.

Table 6

Unit: °C

Group	Quantity	Specimen	Wire Size	Current	Ter	nperature F	Rise	Requirement	Judgment
Gloup	Quantity	Description	Wile Size	Current	Max.	Min.	Ave.	Requirement	Judgment
	30	1P with cover Sealed	14 AWG	15.0A	29.70	20.60	23.31		Meet spec.
	Unsealed 2P with cover	14 AWG	15.0A	29.60	20.60	23.45		Meet spec.	
			14 AWG	15.0A	29.20	23.40	25.94		Meet spec.
2	30	3P with cover Sealed	14 AWG	11.0A	18.60	13.00	15.26	30°C maximum	Meet spec.
	30	2P with cover Sealed	16 AWG	12.0A	25.70	21.00	23.21		Meet spec.
	30	3P with cover Sealed	16 AWG	9.0A	19.00	12.70	15.02		Meet spec.
	30	6P Unsealed with TPA	20 AWG	6.0A	22.10	15.00	18.52		Meet spec.

3.6. Sinusoidal Vibration

Both test group 1 and group 10: No physical damage and no electrical discontinuity greater than 1 μ s were found during and after test.

3.7. Mechanical Shock

No physical damage and no electrical discontinuity greater than 1 μ s were found during and after test.

3.8. Durability

No physical damage.

3.9. Connector Mating Force Test result are shown in Table 7.

								Unit: N			
Group	Quantity	Specimen Description	Condition	Conne	ctor Mating	g Force	Requirement	ludamont			
Group	Quantity	Specimen Description	Condition	Max.	Min.	Ave.	Requirement	Judgment			
	15	1P Unsealed		5.3	3.3	4.1	6.67N Max	Meet spec.			
	15	3P Unsealed		14.5	10	11.9	20.01N Max.	Meet spec.			
4	15	6P Unsealed	Initial	26.9	17.7	21.1	40.02N Max	Meet spec.			
I	15	1P Sealed		17.7	8.1	13.8	18N Max.	Meet spec.			
	15	3P Sealed		27.3	20.3	23.1	54N Max	Meet spec.			
	15	6P Sealed		31.3	23.7	25.8	108N Max.	Meet spec.			

Table 7

3.10. Connector Unmating Force Test result are shown in Table 8.

Table 8

				I able 0				
								Unit: N
Croup	Quantity	Specimen Description	Condition	Connec	tor Unmatir	ng Force	Boquiromont	ludamont
Group	Quantity	Specimen Description	Condition	Max.	Min.	Ave.	Requirement	Judgment
	15 1P Unsealed		3.30	1.40	2.32	1.25N Min.	Meet spec.	
	15	3P Unsealed	After Durability, Vibration and Mechanical Shock	14.10	7.80	11.56	3.75N Min.	Meet spec.
1	15	6P Unsealed		16.80	11.40	13.69	7.5N Min.	Meet spec.
1	15	1P Sealed		4.30	2.60	3.09	1.25N Min.	Meet spec.
	15	3P Sealed		15.19	11.60	13.35	3.75N Min.	Meet spec.
	15	6P Sealed		22.00	16.90	18.75	7.5N Min.	Meet spec.

3.11. Crimp Tensile Strength

Test result are shown in Table 9.

Table 9

								Unit: N
Group	Quantity	Part Number	Wire Size	Crim	p Tensile Stre	ength	Requirement	Judgment
Gloup	Quantity	Fait Number	Wile Size	Max.	Min.	Ave.	Requirement	Judginent
	15 15 2		18AWG	193.5	138.8	175.1	90N Min.	Meet spec.
		2329906-01	20AWG	149.6	123.0	142.0	60N Min.	Meet spec.
	15		2*22AWG	92.9	82.7	88.6	49N Min.	Meet spec.
	15	2329907-1	14AWG	262.6	211.2	245.7	200N Min.	Meet spec.
12	15		16AWG	272.3	233.8	259.7	135N Min.	Meet spec.
12	15	2329908-1	18AWG	196.4	134.0	180.4	90N Min.	Meet spec.
	15	2329906-1	20AWG	138.7	125.1	132.0	60N Min.	Meet spec.
	15		22AWG	92.4	68.7	85.4	49N Min.	Meet spec.
	15	2329909-1	24AWG	66.6	53.2	59.7	29.4N Min.	Meet spec.
	15		26AWG	40.7	24.8	32.3	19.6N Min.	Meet spec.

....

	15	2329912-1	2*22AWG	89.7	60.5	84.0	49N Min.	Meet spec.
	15		18AWG	152.0	138.1	145.3	90N Min.	Meet spec.
	15		20AWG	133.3	124.2	128.5	60N Min.	Meet spec.
	15	2329914-1	18AWG	149.4	132.8	142.1	90N Min.	Meet spec.
	15		20AWG	137.1	103.7	128.2	60N Min.	Meet spec.
	15	2329915-1	22AWG	87.1	72.6	79.9	49N Min.	Meet spec.
	15		24AWG	58.8	52.6	56.3	29.4N Min.	Meet spec.
	15		26AWG	34.9	23.0	30.5	19.6N Min.	Meet spec.
	15	2329916-1	14AWG	266.9	211.9	251.1	200N Min.	Meet spec.
	15		16AWG	167.3	156.7	162.2	135N Min.	Meet spec.

3.12. Housing Panel Retention Force Test result are shown in Table 10.

							Unit: N
Group	Quantity	Specimen Description	Housing Panel Retention Force Max. Min. Ave.			Requirement	Judgment
5	15	2P Cap	Load force until 200N, no physical damage was found after test.			98N Min.	Meet spec.
5	15	6P Cap	Load force until 200N, no physical damage was found after test.			98N Min.	Meet spec.

Table 10

3.13. Housing Locking Strength Test result are shown in Table 11.

Table 11

							Unit: N
Croup	Quantity	Specimen	Hou	sing Locking Stre	Doguiromont	ludament	
Group		Description	Max.	Min.	Ave.	Requirement	Judgment
F	15	2P	129.3	118.9	124.2	66.7N Min.	Meet spec.
0	15	6P	121.8	93.4	105.7	66.7N Min.	Meet spec.

3.14. Contact Insertion Force

Test result are shown in Table 12.

Table 12

							Unit: N
Group	Quantity	y Specimen Description	Con	tact Insertion F	orce	Requirement	Judgment
Gloup			Max.	Min.	Ave.	Requirement	
	15	1P Cap	4.70	3.50	4.18		Meet spec.
	15	1P Plug	8.10	5.90	6.97		Meet spec.
	15	2P Cap	3.30	2.50	2.91		Meet spec.
4	15	2P Plug	4.50	3.30	3.89	13.3N Max.	Meet spec.
4	15	3P Cap	3.60	2.30	2.97	15.51 10/28.	Meet spec.
	15	3P Plug	6.50	4.20	5.21		Meet spec.
	15	6P Cap	3.90	2.90	3.47		Meet spec.
	15	6P Plug	6.70	4.60	5.53		Meet spec.

3.15. Contact Retention Force

Test without TPA. Test result are shown in Table 13. Table 13

							Unit: N
Group	Quantity	Specimen Description	Con	tact Retention	Requirement	Judgment	
		Specimen Description	Max.	Min.	Ave.	Requirement	Judginent
	15	1P Cap without TPA	74.7	70.3	72.4		Meet spec.
	15	1P Plug without TPA	100.9	93.3	97.9	- 53.4N Min.	Meet spec.
	15	2P Cap without TPA	67.1	58.3	63.4		Meet spec.
	15	2P Plug without TPA	102.3	88.2	94.5		Meet spec.
4	15	3P Cap without TPA	69.3	59.3	64.0	55.41 1/111.	Meet spec.
4	15	3P Plug without TPA	104.5	83.4	94.0		Meet spec.
	15	6P Cap without TPA	72.5	63	66.9		Meet spec.
	15	6P Plug without TPA	113.6	83.4	98.9		Meet spec.
	15	6P Cap with TPA	179.3	88.6	123.8	66.7N Min.	Meet spec.
	15	6P Plug with TPA	127.9	95.5	106.4		Meet spec.

3.16. Thermal Shock No physical damage was found after test.

- 3.17. Humidity-Temperature Cycling No physical damage was found after test.
- 3.18. Temperature Life No physical damage was found after test.
- 3.19. Water Immersion No ingress of water nor physical damage.
- 3. 20. Dust Tightness No ingress of dust nor physical damage.
- 3. 21. Resistance to Cold No physical damage was found after test.
- 3. 22. Salt Spray No corrosion was found after test.

4. CALIBRATION

4.1 Calibration Statement

All equipment containing a calibration number is calibrated and traceable through TE Connectivity (TE).

5. VALIDATION

Requested by: Wright, Scott 2019 11 01 /___/_ Product Engineer TE Connectivity USA product engineer Prepared by: 2020 05 15 Wintan Feng / / Test Engineer Shanghai Electrical Components Test Lab. Approved by: Coco Xu 2020 05 18 _/___ _/__ Manager

Shanghai Electrical Components Test Lab.