Qualification Test Report

ELCON Mini cable-to-board power connector system, Two Position, with Pull-Tab

1. INTRODUCTION

1.1 Purpose

Testing was performed on the ELCON Mini two position cable-to-board connector system, using connectors with the optional coding contacts, and cable connectors with Pull-tab to determine its conformance to requirements of Design Objectives 108-19346, Revision H.

1.2 Scope

This report covers the electrical, mechanical, and environmental performance of the cable connector plug (part number 2246068-1) and board connector (part number 1982295-1). Testing was performed at the Engineering Assurance Product Testing Laboratory between 03Jul2014 and 10Oct2014.

1.3. Conclusion

The cable connector plug (part number 2246068-1) and board connector (part number 1982295-1) conformed to the electrical, mechanical, and environmental performance requirements of Design Objectives 108-19346, Revision H.

1.4. Environmental Conditions

Unless otherwise stated. The following environmental conditions prevailed during testing

Temperature: 15 to 35°C Relative Humidity: 25 to 75%

1.5. Product Qualification and Requalification Test Sequence

			Т	est Group			
Test or Examination	1	2	3	4	5	6	7
	Test Sequence (a)						
Examination of product	1,10,14	1,6	1,9	1,17	1,4	1,6	1,3(b)
Termination resistance(power contacts & coding contacts)	2,7,11	2,5	2,4,6,8	2,6,10,14			
Insulation resistance				3,7,11,15			
Voltage proof				4,8,12,16			
Electrical load and temperature		4					
Current temperature de-rating curve		3					
Short-circuit capacity power contacts							2(b)
Resistance at crimp					2		
Vibration Sinusoidal	5						
Physical shock	6						
Insertion/withdrawal forces	3						
Insertion forces during wrong polarization	4						

Latch activation force (no power contact)					2,5	
Mechanical operation(half of number)		3,7				
Contact retention force in cable connector.	12					
Cable pull in 5 directions	8					
Locking latch strength	9					
Crimp tensile.				3		
Coding contact activation	13					
Rapid change of temperature			5			
Climatic sequence			9			
Damp/heat steady state			13			
Corrosion mixed flowing gas		5(c)				
Thermal shock					3	
Temperature life					4	

- (a) Numbers indicate sequence in which tests are performed
- (b) Executed by the customer
- (c) Connectors for this tests shall be preconditioned by mating and un-mating 10 cycles

1.6. Test Specimens

The specimens were representative of normal production lots.

Sample-quantities		TEST-GROUP						
		1	2	3	4	5	6	7
Board connectors	24	6	6	3	3		3	3
Cable connectors(Terminated to cable)		6(d)	6(d)	3	3			3
Cable with power contact						6(d)		
Cable connectors(No cable)							3	

⁽d) Half are 4mm² cables the other half are 6mm² cables.

2. SUMMARY OF TESTING

* Notes: Test group 3 refers to the data of Group 2 in original ELCON Mini Two Position (without pull-tab) test report: 501-19131.

2.1. Initial Examination of Product – All Test Groups

All specimens submitted for testing were representative of normal production lots. A Certificate Conformance (C of C) was issued by Product Assurance. Specimens were visually examined and no evidence of physical damage detrimental to product performance was observed.

2.2. Termination resistance (power contacts & coding contacts) – Test Groups 1, 2 and 4.

Rev b1 2 of 9

^{*} Notes: Termination resistance 1 values below are excl. bulk resistance of wire (approx.: $4mm^2$ cable is $0.32m\Omega$, $6mm^2$ cable is $0.20m\Omega$). The values of termination resistance 2 below are calculated by resistance 1 subtracting bulk resistance of both contact tab and timer contact.

(Test Group	Test Sequence	Termination resistance 1	Spec	Jud.	Termination resistance 2	Spec	Jud.	Termination resistance 3	Spec	Jud.
		2	0.56mΩ Max.		ОК	0.10mΩ Max.		ОК	3.10mΩ Max.	15mΩ Max	ОК
	4mm² Wire	7	0.54mΩ Max.		ОК	0.08mΩ Max.		OK	2.96mΩ Max. ΔR 0.54mΩ Max	ΔR<5mΩ	ОК
		11	0.56mΩ Max		ОК	0.10mΩ Max.		OK	5.24mΩ Max. ΔR 2.69mΩ Max	ΔR<5mΩ	ОК
1		2	0.59mΩ Max.		ОК	0.08mΩ Max.		ОК	3.57mΩ Max.	15mΩ Max	ОК
	6mm² Wire	7	0.58mΩ Max.		ОК	0.07mΩ Max.		ОК	3.76mΩ Max. ΔR 0.50mΩ Max.	ΔR <5m Ω	ОК
		11	0.77mΩ Max.		ОК	0.26mΩ Max.		ОК	5.16mΩ Max. ΔR 2.17mΩ Max	ΔR<5mΩ	ОК
	4mm²	2	0.56mΩ Max.		ОК	0.10mΩ Max.		ОК	3.07mΩ Max.	15mΩ Max	ОК
2	Wire	5	0.62mΩ Max.	0.8mΩ Max.	OK	0.16mΩ Max	0.3mΩ Max.	OK	3.27 m Ω Max. Δ R 0.31 m Ω Max.	ΔR<5mΩ	ОК
	6mm²	2	0.62mΩ Max.		ОК	0.11mΩ Max		ОК	3.43mΩ Max.	15mΩ Max	ОК
	Wire	5	0.78mΩ Max.		ОК	0.27mΩ Max		OK	3.54mΩ Max. ΔR 0.97mΩ Max.	ΔR<5mΩ	ОК
		2	0.57mΩ Max.		ОК	0.11mΩ Max.		ОК	3.28mΩ Max.	15mΩ Max	ОК
		6	0.55mΩ Max.		ОК	0.09mΩ Max.		ОК	3.37mΩ Max. ΔR 1.06mΩ Max.	ΔR <5m Ω	ОК
4	4mm ² Wire	10	0.56mΩ Max		ОК	0.10mΩ Max.		OK	3.29m Ω Max. Δ R 0.27m Ω Max.	ΔR<5mΩ	ОК
		14	0.60mΩ Max.		ОК	0.14mΩ Max.		ОК	3.49mΩ Max.ΔR 0.68mΩ Max.	ΔR<5mΩ	ОК

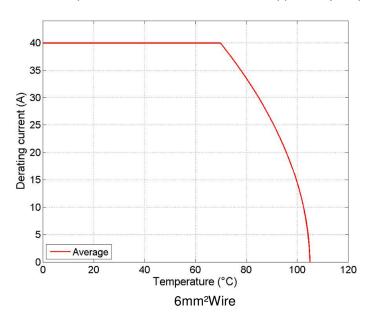
2.3. Insulation resistance – Test Group 4.

Test Group	Test Sequence	Insulation Resistance	Spec.	Jud.
	3	6.65x10 ¹⁰ Ω Min.	5x10³ MΩ	OK
4	7	4.44x10 ¹¹ Ω Min.		OK
4	11	5.55x10 ¹⁰ Ω Min.	1x10³ MΩ	OK
	15	4.20x10 ¹¹ Ω Min.		ОК

2.4. Voltage proof – Test Group 4.

Test Group	Test Sequence	Insulation Resistance	Spec.	Jud.
	4	No break-down or flash-over was observed.		ОК
4	8	No break-down or flash-over was observed.	No bus alidaine au flactaine	ОК
4	12	No break-down or flash-over was observed.	No breakdown or flashover.	ОК
	16	No break-down or flash-over was observed.		ОК

2.5. Electrical load and temperature—Test Group 2.


Rev b1 3 of 9

The data was taken from specimens mounted on 2 ounce copper 4 layers printed circuit boards. The maximum temperature rise for connectors with 4mm^2 cable is 6.15°C , and connectors with 6mm^2 cables is 14.90°C . Both result meet the requirement of 30°C max. T-rise.

2.6. Current temperature de-rating curve – Test Group 2.

The data was taken from specimens mounted on 2 ounce copper 4 layers printed circuit boards.

2.7. Resistance at crimp – Test Group 5.

	Test Group	Test Sequence	Resistance at Crimp	Spec.	Jug.
_	4mm ² Wire	2	0.03mΩ Max.	0.103mΩ Max.	ОК
5	6mm ² Wire	2	0.06mΩ Max.	0.073mΩ Max.	ОК

2.8. Vibration Sinusoidal – Test Group 1.

No discontinuity greater than 1 microsecond were detected; No physical damage.

2.9. Physical shock - Test Group 1.

No discontinuity greater than 1microsecond were detected; No physical damage.

2.10. Insertion/withdrawal forces – Test Group 1.

	Test Group	Test Sequence	Insertion force	Spec.	Jug.	Withdrawal force	Spec.	Jug.
-	4mm ² Wire	3	23.85~24.70 N	50N Max.	OK	11.9~12.5N	10~30N	ОК
	6mm ² Wire	3	23.94~24.46 N	50N Max.	OK	11.72~12.63 N	10~30N	ОК

Rev b1 4 of 9

2.11. Insertion forces during wrong polarization – Test Group 1.

The cable connector was not mated during the applied force of 250N. No physical damage occurred.

2.12. Latch activation force (no power contact) – Test Group 6.

Test Group	Test Sequence	Latch activation force	Spec	Jug.
-	2	9.53N ~ 11.59 N	20N Max.	OK
0	5	7.86N ~ 9.41 N	ZUIN IVIAX.	OK

2.13. Contact retention force in cable connector – Test Group 1.

Apply 50N straight force at a contact of the cable connector, in un-mating direction during 10 sec, all maximum displacement smaller than 0.20mm.

2.14. Cable pull in 5 directions – Test Group 1.

No functional damage was observed and the latch stayed in place.

2.15. Locking latch strength - Test Group 1.

No functional damage was observed and the latch stayed in place.

2.16. Crimp tensile – Test Group 5.

	Test Group	Test Sequence	Crimp tensile	Spec.	Jug.
	4mm ² Wire	3	480N Min.	285N Min.	OK
5	6mm ² Wire	3	448N Min.	370N Min.	OK

2.17. Coding contact activation – Test Group 1.

First power contacts were activated

2.18. Rapid change of temperature – Test Group 4.

No physical damage was found after test.

2.19. Climatic sequence – Test Group 4.

No evidence of abnormities was found after test.

2.20. Damp/heat steady state - Test Group 4.

No evidence of abnormities was found after test.

2.21. Thermal shock – Test Group 6.

No physical damage was found after test.

2.22. Temperature life – Test Group 6.

No physical damage was found after test.

Rev b1 5 of 9

3. TEST REQUIREMENTS AND PROCEDURES SUMMARY

VISUAL					
Test Description	Performance Requirements	Procedures			
Examination of product	 Meets requirements of product drawing and applicable instructions on customer drawing, instruction sheet and application specification. 	Visual, dimensional and functional per applicable inspection plan.			

ELECTRICAL

	ELECTRIC	AL
Test Description	Performance Requirements	Procedures
Termination resistance power contacts	$ \begin{array}{lll} \bullet & \text{Termination resistance 1:} \\ \text{Requirement: } 0.8 \text{m} \Omega \text{ max. (Initial)} \\ 0.8 \text{m} \Omega \text{ max. (Final)} \\ \bullet & \text{Termination resistance 2:} \\ \text{Requirement: } 0.3 \text{m} \Omega \text{ max. (Initial)} \\ 0.3 \text{m} \Omega \text{ max. (Final)} \\ \end{array} $	 In acc. with IEC 60512-2-1 Max. Open voltage 20mV. Max. Current 100 mA DC. All contacts to be ensured. Measuring points shall be as indicated in Figure 1
Termination resistance coding contacts	• Termination resistance 3: Requirement: 15 m Ω max. (Initial) ΔR 5m Ω max (Final)	 In acc. with IEC 60512-2-1 Max. Open voltage 20mV. Max. Current 100 mA DC. All contacts to be ensured. Measuring points shall be as indicated in Figure 1
Insulation resistance	 5x10³ MΩ minimum Initial 1x10³ MΩ minimum final 	 In accordance with IEC 60512-3-1 Test voltage 100V DC. Duration: 1 minute. Test between adjacent contacts.
Voltage proof	No break-down or flash-over	 In acc. with IEC 60512-4-1 Test voltage 750 Vrms for adjacent contacts unmated Duration 1 minute. Test is applicable for unmated board-connector and unmated cable-connector
Electrical load and temperature	Temperature rise is 30°C maximum over ambient temperature.	 In accordance with IEC 60512-9-2 Oven temperature: 65°C Duration: 1000 hrs Current: For 4mm² conductor, 26A, all contacts charged. For 6mm² conductor, 35A, all contacts charged.
Current temperature de-rating curve	Temperature rise is 30°C maximum over ambient temperature	 In acc. with IEC 60512-5-2 test 5b 26 A for 4mm² Conductor and 35A for 6mm² Conductor
Short-circuit capacity power contacts		 Test-current 3000 A/ 10 ms on a mated connector-system Max 5 operations Executed by customer
Resistance at crimp	 4mm² Conductor=0,103mΩ 6mm² Conductor=0,073mΩ 	 Current should be 1 A max. Open voltage should be 0.5 V max. The conductor with the length 1mm should be subtracted. Measuring points shall be as indicated in Figure 3

MECHANICAL

Rev b1 6 of 9

Test Description	Performance Requirements		Procedures
Vibration Sinusoidal	 no discontinuity > 1µs. is allowed 	• I	In accordance with IEC 60512-6-4
	(power-contacts and shielding-		10-500 Hz sweeping
	contacts)		1 oct./min.
	 no physical damage is allowed 		displacement 0,75mm
			peak-acceleration: 10g
			duration of 30 minutes in each of 3 mutual
			perpendicular axes.
Physical shock	 no discontinuity > 1µs. is allowed 		In accordance with IEC 60512-6-3
	(power-contacts and shielding-		Subject connector to 50 g half sine shock,
	contacts)		pulses of 11ms duration.
	 no physical damage is allowed 	• 6	6 shocks in each of 3 mutual perpendicular
			axes.
Insertion/withdrawal	 total mating force 50N maximum 		In accordance with IEC 60512-13-2
forces	 total un-mating force 10N minimum, 		Mate and un-mate connector-pair
	30N maximum		Speed: 10 mm/min.
Insertion forces during	 no physical damage is allowed 		In accordance with IEC 60512-15-1
wrong polarization.	 creating an electrical connection 		Apply 250 N straight force at the cable
	between male and female power-	(connector, in mating direction during 10 sec.
	contacts is not allowed		
Latch activation force	 maximum force needed to open latch: 20N 	• 1	In accordance with TE lab-procedures.
Machanical anavation	 no functional damage is allowed 	•	In accordance with IEC 60512-9-1
Mechanical operation			
	 Locking latch shall latch into the PCB connector. 		Mate and un-mate connector-pair
	POB connector.		Rate: 500 cycles/hour. Speed: 10 mm/s
			Operation cycles: 50 times at -10°C to +65°C nes at -40°C to -10°C and +65°C to +85°C
Contact retention force	 maximum allowed displacement is 		In accordance with IEC 60512-15-1
in cable connector.	0,2 mm		Apply 50 N straight force at a contact of the
	0,2		cable connector, in un-mating direction during
			10 sec.
Cable pull in 5	no finational demons is allowed	ļ .	In accordance with IEC COE10 17.0
directions	no functional damage is allowed		In accordance with IEC 60512-17-3
airections	latch should be in place. Towningtian registered 1: 0.0m C		Cable connector mated on board connector.
	Termination resistance 1: 0.8mΩ		Directions: un-mating, up, down, left, right
	max.		Pull on pair of wires with 60 N forces, during
	Termination resistance 3: 20mΩ		10 sec.
Locking latch strength	max.no functional damage is allowed	•	In accordance with IEC 60512-15-1
Locking later strength	 latch should be in place. 		Apply 100 N straight force at the mated cable
	 Termination resistance 1: 0.8mΩ 		connector, in un-mating direction.
	max.	,	connector, in dir-mating direction.
	 Termination resistance 3: 20mΩ 		
	max.		
Crimp tensile.	Power Contact	•	In accordance with IEC 60512-16-4, Test 16c
	Conduct Size Tensile		Tensile strength (crimped connections)
	4mm ² 285N min.		Determine crimp tensile at a rate of 25 to
	6mm ² 370N min.		100mm per minute.
			The cable clamp should not be attached (it
			must be left open) when performing the
			tensile test.
Coding contact	The coding contacts shall only make		
activation	contact when the power contacts are		
	a serial contractor and	1	

ENVIRONMENTAL

7 of 9

Test Description	Performance Requirements	Procedures
Rapid change of temperature	See Note.	 In accordance with IEC 60512-11-4 -40°/90°C, 0,5 hrs / 0,5 hrs, 5 cycles
Climatic sequence	See Note.	 In accordance with IEC 60512-11-1 Sequence: 90°C, 16 hrs 25°/55°C, RH 93%, 24 hrs -40°C, 2 hrs 25°/55°C, RH 93%, 24 hrs
Damp/heat steady state	See Note.	 In accordance with IEC 60512-11-3 Temperature 40°C, RH 95%, Duration: 21 days
Corrosion mixed flowing gas	See Note.	 In accordance with IEC 60512-11-7 Temperature 25°C, RH 75%, Cl2 10 ppb, NO2 200 ppb, H2S 10 ppb, SO2 200 ppb. Duration: 10 days
Thermal shock	 no functional damage is allowed Locking latch shall latch into the PCB connector. 	 EIA-364-32F, Test Condition II. Subject mated specimens to 5cycles between -65 and 105°C with 120 minute dwells at temperature extremes.
Temperature life	 no functional damage is allowed Locking latch shall latch into the PCB connector. 	 EIA-364-17, Method B, Test Condition 4, Test Time Condition C. Subject mated specimens to 105°C for 1000 hours.

NOTE

Shall meet visual requirements, show no physical damage, and meet requirements of additional tests as specified in the Product Qualification and Requalification Test Sequence shown in 1.5.

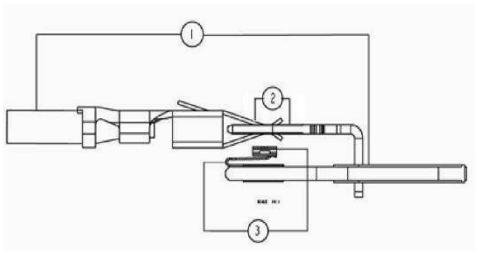


Figure 1 (measurement termination resistance)

Rev b1 8 of 9

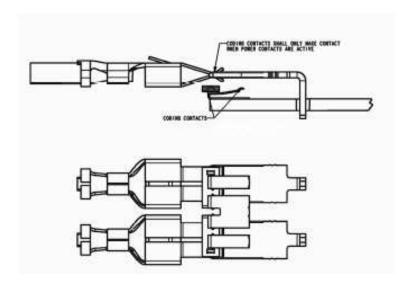


Figure 2 (coding contact activation)

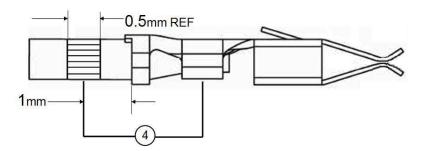


Figure 3 (Resistance at crimp)

Rev b1 9 of 9