

NO. 501-106021 19DEC. 2011 Rev. A2

Qualification Test Report

MINI IO BYPASS CONNECTOR

Tyco Electronics. (Shanghai) Co., Ltd.

1. INTRODUCTION

1.1 Purpose

Testing was performed on Mini IO Bypass CONN. to determine its conformance to the requirements of Design Objective 108-106021, Rev. C.

1.2 Scope

This report covers the electrical, mechanical, and environmental performance of Mini IO Bypass Connector.

1.3 Product Description

Pos. No.	Name	Remarks
1981080-1	Industrial Mini I/O connector	1.27mm Picth 8p Header ASSY. D-Shape Type1
1971153–1 Industrial Mini I/O Bypass Connector		Package refer to FG-1971153-1 1pc per small bag, 200pcs per big bag
1971153-2	Industrial Mini I/O Bypass Connector	Package refer to FG-1971153-2 20pc per small bag, 200pcs per big bag
2040537-1	Industrial Mini I/O H-HDR ASSY DIP 1	

Fig. 1

1.4 Environmental Conditions

Unless otherwise stated, the following environmental conditions prevailed during testing:

Temperature:	15°C to 35°C
Relative Humidity	25% to 75%

1.5 Qualification Test Sequence

	Test Group												
Test or Examination	1	2	3	4	5	6	7	8	9	10	11	12	13
						Test	Sequer	nce (a)					
Confirmation of Product	1	1	1	1	1	1	1	1	1	1	1	1	1
Termination Resistance				2,6			2,5	2,4	2,4	2,4	2,4	2,4	2,4
(Low Level)													
Insulation Resistance	2,5	2,5											
Dielectric withstanding Voltage	3,6	3,6											
Temperature Rising			2										
Connector Mating Force				3									
Connector Unmating Force				4									
Durability				5									
(Repeated Mating/Unmating)													
Lock strength					2								
Fixed strength to PCB						2							
Vibration (Low Frequency)			2				3						
Physical Shock							4						
Temperature Life(Heat Aging)								3					
Humidity(Steady State)	4								3				
Thermal Shock										3			
Humidity-Temperature Cycling		4									3		
Salt Spray												3	
Hydrogen sulfide Gas(H2S													3

Remark: "a" indicates the sequence in which the tests are performed.

Fig. 2

2. TEST CONTENT

No.	2.1		
Test Items	Examination of Product		
Requirements	Meets requirements of product drawing. After test, no corrosion influence performance.		
Drogodurog	Visual inspection		
Flocedules	No physical damage		
	Electrical Requirements		
No.	2.2		
Test Items	Termination Resistance (Low Level)		
Dequinemente	80 m Ω Max. (Initial)		
Requirements	100 m Ω Max. (Final)		
Procedures	Subject mated contacts assembled in housing to 20mV Max. Open circuit at 100mA.		
Tiocedules	EIA364-23		
No.	2.3		
Test Items	Dielectric withstanding Voltage		
Requirements	No creeping discharge nor flashover shall occur.Current leakage:0.5mA Max		
	250VAC for 1 minute.		
Procedures	Test between adjacent circuits and between the surface of housing and contact of mated		
	connectors. EIA364-20		

No.	2.4
Test Items	Insulation Resistance
Requirements	500MΩ Min
	Impressed voltage 100 V DC.1 minute hold.
Procedures	Test between adjacent circuits and between the surface of housing and contact of mated
11000000100	connectors.
	EIA364-21
No.	2.5
Test Items	Temperature Rising
Requirements	30°C Max. under loaded specified current.
Procedures	Measure temperature rising by energized current.
	Mechanical Requirements
No.	2.6
l est ltems	Connector Mating Force
Requirements	30N Max
Procedures	Cut the protruded locking feature. Operation Speed:10mm/min.Measure the force
No	required to mate samples. EIA364-13.
Tost Itoms	2.1
Requirements	30N Max
Procedures	Cut the protruded looking feature. Operation Speed:10mm/min Measure the force
Tiocedures	required to unmate samples. EIA364–13.
No.	2.8
Test Items	Durability (Repeated Mate/Unmating)
Requirements	Termination Resistance(Low Level)
Procedures	Operation Speed:200cycles/hour
	No. Of cycles:5cycles. EIA364-09
No.	2.9
Test Items	Lock Strength
Requirements	15N Min. For initial mating
	12N Min. For 5 th mating
Procedures	Mate connector and make lock mechanism effective.
No	
Tost Itoms	Physical Shock
	No electrical discontinuity greater than
Requirements	1μ sec. shall occur
nequiremente	Termination Resistance(Low Level)
	Accelerated Velocity. (30 G)
	Waveform : Half-sin Curve
	Duration : 11 m sec.
Procedures	Number of Drops : 3 drops each to normal and reversed directions of X, Y and Z axes,
	totally 18 drops
	EIA364-27
	2.11

Test Items	Vibration (Low Frequency)		
Destringmente	No electrical discontinuity greater than 1 μ sec. shall occur.		
Requirements	Termination Resistance(Low Level).		
	Subject mated connectors to 10-55-10 Hz traversed in 1 minute at 1.52mm amplitude 2		
Procedures	hours each of 3 mutually perpendicular planes.		
	EIA364-28		
No.	2.12		
Test Items	Fixed Strength to PCB		
Requirements	No destruction on Receptacle connector with PCB and no harmful damage on other parts.		
	Mate connector. Apply load to edge of plug connector.		
Procedures	Load one direction on one sample.		
	40N. 1minute.		
	Environmental Requirements		
No.	2.13		
Test Items	Temperature Life		
Requirements	Termination Resistance(Low Level)		
Procedures	Mate connector.85°C,315Hours. EIA364-17.		
No.	2.14		
Test Items	Humidity(Steady State)		
	Dielectric strength.		
Requirements	Insulation resistance.		
*	Termination resistance (Low Level)		
	Mated connector.40°C,		
D 1	90~95 % R. H. 10 cycles		
Procedures	EIA364-31		
	1cycle=24hours		
No.	2.15		
Test Items	Thermal Shock		
Requirements	Termination Resistance(Low Level)		
*	Mated connector		
5 1	-55℃/30 min., 85℃/30 min.		
Procedures	Making this a cycle, repeat 10 cycles.		
	EIA364-32		
No.	2.16		
Test Items	Humidity-Temperature Cycling		
	Dielectric strength.		
Requirements	Insulation resistance.		
	Termination resistance (Low Level)		
	Mated connector, $25 \sim 65^{\circ}$ C,		
	80~98 % R. H. 7 cycles		
Procedures	Cold shock -10° C performed		
	EIA364-31		
	1cycle=24hours		
No.	2.17		
Test Items	Salt Spray		
D	Termination resistance (Low Level)		
Requirements	After it is left for 1 hour under a steady temoerature/humidity, it is measured.		

Procedures	Mated connector Salt concentration:5%, 35±2°C,48Hours EIA364-26 (MIL-STD-202F Method 101 Condition B)		
No.	2.18		
Test Items	Hydrogen Sulfide Gas		
Requirements	Termination resistance (Low Level)		
Procedures	Mated Conn. 3±1 ppm, 40±2℃ 96 hours JEIDA-38		

* Product must be without rust, corrosion transformation, crack and discoloration.

3. TEST RESULT

3-1.Dielectric withstandard Voltadge(Before and After Humidity Temperature Cycling)

	Initial	After Humidity
		Temperature Cycling
Number of sample	10sets	10sets
Result	No creeping discharge	No creeping discharge
	No flashover	No flashover
Specification	250V AC	250V AC
Judgment	Acceptable	Acceptable

3–2.Insulation Resistance

	UNIT: m Ω	
	Initial	After Humidity
		Temperature Cycling
Number of sample	10	10
Result	1.0*10 ¹¹ Min.	1.0*10 ¹⁰ Min.
Specification	1.0*10^6 Min.	5.0*10 ⁵ Min.
Judgment	Acceptable	Acceptable

3-3. Temperature Rising

UNIT:℃		
Number of sample	10	
Max.	5.08	
Min.	3.71	
Ave.	4.33	
σ	0.467	
Specification	30 Max	
Judgment	Acceptable	

3-4.Connector Mating Force

UNIT: N						
	1st	5th				
Number of sample	10	10				
Max.	12.94	12.5				
Min.	3.71	3.2				
Ave.	8.63	7.95				
Specification	30Nmax	30Nmax				
Judgment	OK	OK				

Connector Un-mating Force

UNIT: N						
	1st	5th				
Number of sample	10	10				
Max.	11.58	10.65				
Min.	2.93	2.62				
Ave.	6.81	6.19				
Specification	30Nmax	30Nmax				
Judgment	OK	OK				

3-5.Durability(Repeated Mating/Un-mating)

	Mating Force	Unmating Force	Termination	resistance
	5th (N)	5th (N)	$Initial(m\Omega)$	$5 \mathrm{th}(\mathrm{m}\Omega)$
Number of sample	10	10	10	10
Max.	12.5	10.65	46.995	36.296
Min.	3.2	2.62	25.626	26.963

Ave.	7.95	6.19	29.901	31.627
Specification	30Nmax	30Nmax	80 m Ω max	100 m Ω max
Judgment	Acceptable	Acceptable	Acceptable	Acceptable

3-7.Lock Strength

	UNIT: N	
	Initial	5th
Number of sample	10	10
Max.	35.32	24.2
Min.	16.56	13.84
Ave.	23.81	18.14
Specification	15N Min	12N Min
Judgment	Acceptable	Acceptable

3-5.Physical Shock/Vibration

UNIT: $m \Omega$

	Initial	Final
Number of sample	10	10
Max.	31.075	35.091
Min.	22.627	23.575
Ave.	27.611	28.906
σ	1.990	2.601
Specification	80 Max	100 Max
Judgment	Acceptable	Acceptable

No electrical discontinuity greater than 1 μ sec shall occur. ----Acceptable

3-9.Fixed Strength to PCB

No destruction on Receptacle connector with PCB and no harmful damage on other parts.-----Acceptable

3-18.Heat Aging

UNIT: m Ω

	Initial	Final
Number of sample	10	10
Max.	31.482	35.407
Min.	22.921	22.771
Ave.	27.834	28.899
σ	2.216	2.428
Specification	80 Max	100 Max
Judgment	Acceptable	Acceptable

3-12.Humidity(steady state)

	UNIT: m Ω	
	Initial	Final
Number of sample	10	10
Max.	30.116	31.375
Min.	21.663	22.198
Ave.	26.618	26. 795
σ	2.185	2.635
Specification	80 Max	100 Max
Judgment	Acceptable	Acceptable

3–14.Thermal Shock

	UNIT: m Ω	
	Initial	Final
Number of sample	10	10
Max.	33. 509	35.052
Min.	21.877	21.823
Ave.	27.868	29.010
σ	2.998	3.226
Specification	80 Max	100 Max
Judgment	Acceptable	Acceptable

3–12. Humidity–Temperature Cycling

UNIT: m Ω

	Initial	Final
Number of sample	10	10
Max.	43.601	36.575

Min.	23.885	23.532
Ave.	28.645	29.201
σ	4.091	3.672
Specification	80 Max	100 Max
Judgment	Acceptable	Acceptable

3-15.Salt Spray

	UNIT: m Ω	
	Initial	Final
Number of sample	10	10
Max.	28.718	32.006
Min.	20.083	21.411
Ave.	25.871	27.194
σ	2.371	2.696
Specification	80 Max	100 Max
Judgment	Acceptable	Acceptable

3-13.H₂S

	UNIT: m Ω	
	Initial	Final
Number of sample	10	10
Max.	40.614	55. 531
Min.	19.312	20.244
Ave.	26.797	29.804
σ	3.748	7.211
Specification	80 Max	100 Max
Judgment	Acceptable	Acceptable

4. Conclusion

Mini IO Bypass Connector conformed to the electrical, mechanical, and environmental performance requirements of Design Objective 108-106021, Rev C.

5. VALIDATION

Requested by:

Leo Liu	09 01 23 //
Product Engineer Shanghai Engineering Center (CIS)	
Prepared by:	
Johnson Wu	09 03 26
	//
Test Engineer Shanghai Engineering Center (CIS)	
Approved by:	
Julian Zhou	09 03 26
	//

Manager Shanghai Engineering Center (CIS)