

Rev. A

# MCP-E Terminal

## 1. SCOPE

#### 1.1 Content

This specification describes the design, the characteristics, the tests and the quality requirements of the MCP-E Tab / Recep Terminal.

#### 1.2 General Product Description

The contact system combines the features of robust construction and highest functional requirements.

The electrical contact is made by a rectangle pin with length 2.8mmx0.8mm.

#### 1.3 Application Sector

The contact system is designed for electronic applications with shrouded connectors and pin headers in automobiles.

#### 1.4 Qualification

When testing the MCP-E Tab/Rec products the following specified specifications and standards shall be used. All tests have to be done using the applicable inspection plan and product.

#### 2. REFERENCED DOCUMENTS

The following documents form a part of this specification to the extent specified herein. In the case of a conflict between this specification and the specified documents, this specification has priority. For the listed documents is valid the specification at the date of the first release of this specification.

#### 2.1 TE Specifications

- A. 109-1 General Requirements for Test Specifications
- B. 114-61033 Application Specification for MCP-E Terminal
- C. 1743423, 1743424, 1743425, 1743426 / 936612, 936613 MCP-E Tab drawing (Unsealed / Sealed)
- D. 1743162, 1743163, 1743465 / 936606, 936607 MCP-E Rec drawing (Unsealed / Sealed)



### 3. DESCRIPTION OF NOMENCLATURE

All design and construction data, such as dimensions, materials, wire sizes, etc., are shown in the product drawings.

## 4. **PROPERTIES**

#### 4.1 General Requirements

The product must correspond with the drawing, concerning the design and the physical dimensions.

## 4.2 Technical Data - Ratings

| A. Current carrying capacity | Max. 22A                                    |
|------------------------------|---------------------------------------------|
| B. Maximum mating cycles     | 10 (for tin-plated contacts)                |
| C. Temperature range         | -40 °C to +125 °C (for tin-plated contacts) |
| D. Voltage                   | 14.0 ± 0.1 VDC                              |

### 4.3 Performance

Product is designed to meet the electrical, mechanical and environmental performance requirements specified in

Chapter 4.4

Unless otherwise specified, all tests shall be performed at ambient environmental conditions.

## 4.4 Test Requirements and Procedures Summary

| Test Description                                                 | Requirer                                                                                                                     | nent             | Procedure                                                                                                                                                                          |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                  | TERMINAL ME                                                                                                                  | CHANICAL         |                                                                                                                                                                                    |  |  |  |
| 1. Visual Inspection                                             | Assure parts used for damage and obvious d                                                                                   |                  | Visually, dimensionally and functional<br>inspected per applicable quali<br>inspection plan.                                                                                       |  |  |  |
| 2. Terminal/Terminal Cycling                                     | Preconditioning                                                                                                              |                  | Completely mate and un-mate eac<br>connector or terminal pair 10 times fo<br>tin-plated contacts.                                                                                  |  |  |  |
| 3. Terminal-to-Terminal Engaging<br>Force                        | 0.3 ~ 1.5kgf                                                                                                                 |                  | Operation speed: 50mm/min.<br>Measure the force required to mate<br>contact Initial.                                                                                               |  |  |  |
| 4.Terminal-to-Terminal<br>Disengaging Force                      | 0.15 ~ 1.5kgf                                                                                                                |                  | Operation speed: 50mm/min.<br>Measure the force required to un-mate contact.                                                                                                       |  |  |  |
| 5. Terminal Bend Resistance                                      | Terminal shall not b<br>1kgfload                                                                                             | e damaged by a   | Operation speed: 50mm/min.<br>Original position, the terminal rotate<br>90° and 180°from the position<br>shown in Fig. 1                                                           |  |  |  |
| 6. Terminal Retention Force *                                    | Secondary lock : 10kgf                                                                                                       | <sup>-</sup> min | Operation speed: 50mm/min.<br>Fix the housing after inserting crimpe<br>terminals. Extend one line of cable i<br>axial direction at a position 50~100 mr<br>away from crimped part |  |  |  |
| 7. Crimp Tensile Strength<br>(for copper/copper alloy conductor) | Wire Size (mm²) Strength (N)   0.3 6kgf min   0.5 9kgf min   0.85 13kgf min   1.25 17kgf min   2.0 20kgf min   3.0 35kgf min |                  | Operation speed: 50mm/min.<br>Apply an axial pull-off load to crimped<br>wire of contact secured on the tester.                                                                    |  |  |  |

(Continued)



|                                            | TERMINAL ELECTRICAL                                                                       |                                                                                                                                                                                                                       |  |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 8. Termination Resistance *<br>(Low Level) | Initial: 3 mΩ Max.<br>Final: 10 mΩ Max.                                                   | Subject mated contacts assembled in<br>housing to 20±5mV open circuit at 100<br>mA Max.<br>Fig. 2<br>Max terminal current measurements<br>are done. Temp rising 40°C Max.<br>Fig. 3<br>(Refer to SAE/USCAR-2 5.3.3.3) |  |  |  |  |
| 9. Maximum Current Rating                  | Satisfy requirements of test item on the "4.5 sequence."                                  |                                                                                                                                                                                                                       |  |  |  |  |
| 10. Current Cycling                        | 40°C maximum temperature rise<br>Over ambient.<br>No ignition is allowed during the test. | Only perform the mate/unmate<br>conditioning on a mated pair only once<br>if the pair is used in multiple tests.<br>45 minutes "ON", 15 minutes "OFF"<br>1008 Hours                                                   |  |  |  |  |
| 11. Instant Cutoff *                       | No electrical discontinuity exceeds 4.3V for more than 10 µsec shall occur.               | Connect in series. Apply power with a waveform recorder and check. 5V, 100mA<br>Fig. 4                                                                                                                                |  |  |  |  |
|                                            | TERMINAL ENVIRONMENTAL                                                                    | ·                                                                                                                                                                                                                     |  |  |  |  |
| 12. Vibration *                            | Satisfy requirements of test item on the "4.5 sequence."                                  | Frequency: 20-200<br>Sweep time: 3min Max.<br>Acceleration: 4.4G<br>Direction: X, Y, Z<br>Duration: 40hours per each direction                                                                                        |  |  |  |  |
| 13. Thermal Shock *                        | Satisfy requirements of test item on the "4.5 sequence."                                  | -40°C/60 min. 105°C/60min.<br>Temp transfer time: 5min. Max.<br>Making this a cycle,<br>repeat 200 cycles<br>Fig. 5                                                                                                   |  |  |  |  |
| 14. Temp/Humidity *                        | Satisfy requirements of test item on the "4.5 sequence."                                  | 5cycle<br>Fig. 6                                                                                                                                                                                                      |  |  |  |  |
| 15. Temp' Rising *                         | Satisfy requirements of test item on the "4.5 sequence."                                  | Measure temperature rising at wire<br>crimped by applied current to all<br>positions.                                                                                                                                 |  |  |  |  |
|                                            | (End)                                                                                     |                                                                                                                                                                                                                       |  |  |  |  |



\* The test is required with applicable housing and header product.

## 4.5 Product Qualification Test Sequence

|                                              |                 | Test Group (sample quantities: 10ea minimum) |     |     |     |     |     |     |     |  |
|----------------------------------------------|-----------------|----------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| Test Examination                             | TG1             | TG2                                          | TG3 | TG4 | TG5 | TG6 | TG7 | TG8 | TG9 |  |
|                                              | Test Sequence * |                                              |     |     |     |     |     |     |     |  |
| 1. Visual Inspection                         | 1,4             | 1,3                                          | 1,3 | 1,3 | 1,3 | 1,6 | 1,4 | 1,4 | 1,5 |  |
| 2. Connector/Terminal Cycling                | 2               |                                              |     |     |     |     |     |     |     |  |
| 3. Terminal-to-Terminal<br>Engaging Force    | 2               |                                              |     |     |     |     |     |     |     |  |
| 4. Terminal-to-Terminal<br>Disengaging Force | 3               |                                              |     |     |     |     |     |     |     |  |
| 5. Terminal Bend Resistance                  |                 | 2                                            |     |     |     |     |     |     |     |  |
| 6. Terminal Retention Force                  |                 |                                              | 2   |     |     |     |     |     | 4   |  |
| 7. Crimp Tensile Strength                    |                 |                                              |     | 2   |     |     |     |     |     |  |
| 8. Voltage Drop                              |                 |                                              |     |     | 2   | 5   | 3   | 3   | 3   |  |
| 9. Maximum Current Rating                    |                 |                                              |     |     |     | 2   |     |     |     |  |
| 10. Current Cycling                          |                 |                                              |     |     |     | 3   |     |     |     |  |
| 11. Instant Cutoff                           |                 |                                              |     |     |     |     | 2   |     |     |  |
| 12. Vibration                                |                 |                                              |     |     |     |     | 2   |     |     |  |
| 13. Thermal Shock                            |                 |                                              |     |     |     |     |     | 2   |     |  |
| 14. Temp/Humidity                            |                 |                                              |     |     |     |     |     |     | 2   |  |
| 15. Temp Rising                              |                 |                                              |     |     |     | 2,4 |     |     |     |  |

\* Numbers indicated sequence in which tests are performed.



## 4.6 Test Reference / Appendix



Fig. 1 Terminal Bend Resistance







Fig. 5 Thermal Shock





Fig. 6 Temp/Humidity