

20.MAR.'20 Rev A

The product described in this document has not been fully tested to ensure conformance to the requirements outlined below. Therefore, TE Connectivity (TE) makes no representation or warranty, express or implied, that the product will comply with these requirements. Further, TE may change these requirements based on the results of additional testing and evaluation. Contact TE Engineering for further details.

PN	Description
1897499-1	CAP HSG ASS'Y FOR HYB(040/090) REAR DOOR 18P
1897502-1	PLUG HSG ASS'Y FOR HYB(040/090) REAR DOOR 18P

- 1 Scope
- 2 Quality
- 3 Requirements

4 Requirements Measuring Method

- 4.1 Appearance
- 4.2 CONN engage and disengage force
- 4.3 Reverse insertion between housing
- 4.4 Reverse insertion between terminal and housing
- 4.5 Engage force between terminal and housing
- 4.6 HSG Lock strength
- 4.7 HSG Lock releasing force
- 4.8 Terminal retention force
- 4.9 Terminal engage and disengage force
- 4.10 Crimp strength
- 4.11 Voltage drop
- 4.12 Insulation resistance
- 4.13 Leakage current
- 4.14 High voltage test
- 4.15 Temperature rise
- 4.16 Instant short circuit
- 4.17 CONNECTOR coupling sound

*Trademark. TE Connectivity, TE connectivity (logo), and TE (logo) are trademarks. Other logos, product, and/or company names may be trademarks of their respective owners.

4.18 Plate Retention

5 Test conditions

- 5.1 specimen
- 5.2 Laboratory condition
- 5.3 Basic current
- 5.4 Evaluation
- 5.5 Cable size

6 Test Method

- 6.1 Connector endurance test (Twisting test + CONN Engage / Disengage endurance test)
- 6.2 Overcurrent cycle test
- 6.3 Cold temperature test
- 6.4 Cold and hot temperature shock test
- 6.5 High temperature test
- 6.6 Temperature and humidity cycle test
- 6.7 Dust test
- 6.8 Oil and liquid test
- 6.9 Ozone test
- 6.10 Sulfur(SO2) gas test
- 6.11 Mechanical shock test

Complex environment endurance test A

1. SCOPE

This SPEC defines the test method for low voltage connectors (connector) and low voltage terminals

(terminal).

* Related specification: ES91500-00

2. Quality

The quality of connector have to meet each characteristics at column 3 with items of test in table 1.

3. Requirements

NO	items	characte	characteristics						Measuring method					
1	Appearance	No harmf	ul crac	k, rust,	burr, o	damage	, deforr	nation,	discol	oration e	etc.			4.1
2	CONN engage And disengage Force	7.6kgf of	less											4.2
3	Reverse insertion Between housing	lt shall no deformati			-			d curr	ent be	tween te	erminal	ls by h	ousing	4.3
4	Reverse insertion between terminal and housing	025 : 3kg	f or mo	re , 060) & 11	0 : 5kgf	or mor	e						4.4
5	Engage force between terminal and housing	025 : 0.8ł	kgf or le	ess , 06	0 & 1	10 : 1.5k	gf or le	SS						4.5
6	HSG lock strength	10kgf or r	nore											4.6
7	Lock release force	Force on	release	e force	point	oint of lock part shall be 0.5~6kgf								4.7
		Terminal	type			025			06	060 110				
8	Terminal retention force	After eng	age TP	Ά		6kgf or more 8			8kgf or more			10kgf or more		4.8
		Befere er	ngage T	ΓPA	:	3.5kgf o	r more	3.	5kgf o	r more 6kgf or more			nore	
	Terminal	Terminal	type			02	5		06	0		110		
9	engage and disengage force	Engage				0.1~().5		0.2~	0.8		0.3~1.	.5	4.9
	(kgf)	Disengage			sengage 0.1~0.5 0.15~0.8		0.15~1.5		.5	-				
	Crimp strength	SQ	0.22	0.3	0.5	0.75	0.85	1.25	2.0	2.5	3.0	5.0	8.0	
10	(kgf)	(Kgf) or more	4	6	9	11	13	17	20	25	35	40	50	4.10
11	Voltage drop	Division				Initial				After e	nduran	ice		4.11

		025	10 mV/A or le	SS	20 mV/A or less		
		060	5 mV/A or les	S	10 mV/A or less		
		110	3 mV/A or les	S	10 mV/A or less		
10	Insulation	Division	Initial		After endurance	1.10	
12	resistance	waterproof	100 ^{MΩ} or mor	е	100 ^{MΩ} or more	4.12	
40	Leakage	Division	Initial		After endurance	4.42	
13	current	waterproof	1 μ A or less		1 ^{µA} or less	- 4.13	
14	High voltage test	Tr	nere shall be no	eak.	4.14		
15	Temperature	Division			After endurance	4.15	
15	rise	General CONNEC	TOR 40° [⊂] or less		40° [⊂] or less	4.15	
16	Instant short circuit	There shal	There shall be no 10 μ s or more instant short			4.16	
17	Connector coupling sound	65 dB(A) or more				4.17	
10	Plate	Retention force	е		Escaping force		
18	Retention 5 kgf or more				3 kgf or more	4.18	

< Table 1 >

4. Requirements Measuring Method

4.1 Appearance By sense of sight and touch.

, C

4.2 CONNECTOR engage and disengage force

Measure force by engaging and disengaging the connector with terminal assembled at constant 50 mm/min speed. However, remove lock part when measuring disengage force.

4.3 Reverse insertion between housings

- 1) Insert terminal to housing
- 2) Fix housing of female connector to moving part of measuring instrument in reverse insertion direction. (Reverse insertion: 180 degree rotation on the locking part)
- 3) Set a measuring instrument to stop at force of 20kgf and insert that. At this moment, monitor resistance of one terminal matched to identify current carrying between terminals.
- 4) Check the insertion by housing modification of male connector after connector insertion.
- 4.4 Reverse insertion between terminal and housing Crimp cable of maximum size on terminal and then, insert it into housing by the end of insulation.
- 4.5 Engage force between terminal and housing

As shown in the following figure 4-1, measure the weight while inserting terminal into fixed housing at 50mm/min speed.

4.6 HSG Lock strength

Combine housing only, fix the one side of housing in completely locked condition, and extend the other side in axial direction and 30 angle direction at a constant speed of 100mm/min. Then measure weight when lock structure is disengaged or destroyed.

4.7 HSG lock releasing force

Apply force (F) to lock releasing part, and measure weight on the point of A=0. However, cut connector and then perform test at the section in order to secure visibility.

4.8 Terminal retention force

Fix the housing after inserting crimped terminals. Extend one line of cable in axial direction at a speed of 50mm/min at a position 50±5 mm away from crimped part, and measure weight when terminal is disengaged from the housing.

4.9 Terminal engage and disengage force

As shown in figure 4-3, engage and disengage male terminal or steel gauge into or from female terminal at 50 mm/min speed.

4.10 Crimp strength

Fix the crimped terminal, and draw the cable at a position 50±5 mm away from crimped part in axial direction at 100 mm/min speed. Then measure the weight when cable is cut or disengaged from the crimped part.

4.11 Voltage Drop

Measure the circuit voltage drop (V) by sending voltage and current described in the table 2 with terminal combined on the connector. Then calculate a voltage drop (V_D) in terminal by subtracting cable resistance (L) from the circuit voltage drop (V).

- 1) HARNESS vs. HARNESS : $V_D = V (L_1 + L_2)$
- 2) HARNESS vs. UNIT : $V_D = V (L_3 + L_4)$

Application	Open voltage	Short circuit current	Division
Signal circuit	20 ± 5 ^{mV}	10 mA	ECU, Sensor
Power circuit	13 V	1 A	Other than the above
		< Table 0 >	

< Fig. 4-4 : HARNESS vs. HARNESS >

< Fig. 4-5 : HARNESS vs. UNIT>

4.12 Insulation resistance

Measure resistance between neighbor terminals (figure 4-6), and between terminal and housing surface (figure 4-7) with DC 500V insulation resistance gauge with connector combined.

<Fig. 4-6: Between neighboring terminals> <Fig. 4-7: Between neighboring terminal and housing surface>

4.13 Leakage current

Measure it by applying DC 14V between neighboring terminals (figure 4-6).

4.14 High voltage test

Apply AC 1000V voltage of normal frequency for 1 minute between neighboring terminals (figure 4-6), and between housing surfaces of terminal (figure 4-7), with connector combined.

4.15 Temperature rise

Apply basic current (I=I₀×K) of clause 5.3 to the connector with electrodes in series in the room free from wind (normal temperature). And measure a temperature of crimped part after reaching saturation temperature. Then calculate a temperature of crimped part by subtracting ambient temperature from the temperature.

4.16 Instant short circuit

It is instant short circuit, when 3.5V or less voltage continues for 10μ s or more in gauge by applying 1 mA, 5V open voltage. Figure 4-8 is an example of measured circuit.

<Fig. 4-8>

4.17 Connector coupling sounds

Put sound measurement equipment on 700±10 mm away from the connector. Measure the peak sound that occurs when you combine the connector. Sounds unit: dB(A)

- 4.18 Plate retention
 - 1) Plate retention : after fixing connector that is combined with plate, push the center of plate with the round bar which has diameter less than 10mm by pressing the 50 mm/min. Measure the value of the plate when the lock off
 - 2) Plate escape power : after fixing connector that is combined with plate, Connected by wire to the center of the plate. Pull the wires 50mm/min at a rate, measure the value when the plate is escaped.

5. Test conditions

5.1 Specimen

Unless there is specific mention, initial sample should use for the test specimen, and test specimen shall be 5EA or more for each cavity. However, if performance is expected to be clearly satisfactory ever by applying load to the same specimen in turn, it is possible to apply multiple test items to the same specimen. In such case, performance shall be satisfied with each item.

5.2 Laboratory condition

Perform each test at designated temperature and humidity. And control humidity at designated absorption ratio for the connector which uses absorbent resin housing.

Temperature: $25 \pm 5 \degree$ C Humidity: $60 \pm 20\%$ Standard absorption ratio (reference value) $6 \text{ NYLON: } 2 \sim 4\%$ $66 \text{ NYLON: } 1.5 \sim 3\%$

5.3 Basic current

Basic current value "I" shall be based on the following. ($I = I_0 * K$)

Cable size		lo	Remarks
(SQ)	General	L TYPE -375	
0.22	4 A		
0.3	6 A		4A for signal
0.5	8 A		5A for signal
0.85	10 A		
1.25	14 A		
2	18 A		
3	22 A	34 A	
5	25 A	46 A	
8		60 A	

Number of simultaneous electrode	К
within the same connector	Reduction factor
1	1
2~3	0.75
4 ~ 5	0.6
6~8	0.55
9 ~ 10	0.5
11 ~ 25	0.4
26 or more	0.3
-	-

Т

< Table 3.1 >

< Table 3.2 >

5.4 Evaluation

Evaluation shall be represented by evaluation applicable connector. And Annual evaluation of connectors shall be represented by evaluation of connectors of the maximum number of poles in the same series.

5.5 Cable size

The size of connector lead wire used in each test shall be follow Table 4.

Test Ite	Test Item			Test Iten	ı	MIN WIRE	MAX WIRE
And disen	CONN engage And disengage Force		0	High temperature test	Voltage Drop	-	0
Reverse insertion housin		-	0		Sealing	0	0
CPA engage and re	etention forces	-	-	Soldering to	est	-	-
Reverse insertion terminal and		-	-		Voltage Drop	-	о
Engage force terminal and		0	-	Temperature and humidity cycle test	Insulation resistance	0	0
CONN'R CLIP e disengage		-	-		Leakage current	-	0
HSG lock st	rength	-	-		Sealing	0	0
HSG Lock rele	ase force	-	-	Dust test	Voltage Drop	-	ο
Terminal reten	tion force	-	0		Sealing	0	0
	Terminal engage and disengage force		ο		Insulation resistance	-	0
Crimp stre	ength	0	ο	Waterproof test	Leakage current	-	0
Voltage o	drop	-	0		Sealing	0	0
Insulation res	sistance	-	ο	Oil and liquid test	Voltage Drop	-	0
Leakage c	urrent	-	0		Sealing	0	0
High voltag	je test	-	0	Ozone test	Voltage Drop	-	0
CONN endurance	Appearance	-	0		Sealing	0	0
test	Voltage Drop	-	- 0		Voltage Drop	-	0
Overcurrent cycle	Appearance	-	0	Salt water test	Insulation resistance	-	0
Test			0		Leakage current	-	0
Cold temperature	Appearance	-	0	Sulfur test	Voltage Drop	-	0
Test	Voltage Drop	-	0		Sealing	0	0
	resistance		0	Mechanical shock	Instant	-	0

	Leakage current	-	о	test	short circuit		
	Temperature rise	-	0		Crimp strength	0	0
	Sealing	0	0	Complex	Voltage Drop	-	0
Cold and hot	Voltage Drop	-	0	Complex environment Endurance test	Temperatur e rise	-	0
Temperature test	Sealing	0	0		Instant short circuit	-	0
Connector coup	ling sounds	-	-		Sealing	0	0
< Table 4 >							

6. Test Method

Test Items	Appearance	CONN engage and disengage Force	Reverse insertion Between housing	Reverse insertion between terminal and housing	Engage force between terminal and housing	HSG lock strength.	Lock release force	Terminal retention force	Terminal engage and disengage force (kgf)	Crimp strength (kgf)	Voltage drop	Insulation resistance	Leakage current	High voltage test	Temperature rise	Instant short circuit	CONNECTOR coupling sound	Plate retention
Initial test	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
Connector twisting test	0										0							
Engage / Disengage endurance test	0										0							
Overcurrent cycle test	0										0				0			
Cold temperature test	0										0	0	0		0			
Cold and hot temperature shock test	0										0							
High temperature test	0										0							
Temperature and humidity cycle test	0										0	0	0					
Dust test											0							
Oil and liquid test	0										0							
Ozone test	0										0							
Sulfur test	0										0							
Mechanical shock test																0		
Complex environment endurance test A										0	0				0	0		

< Table 5: Test items >

6.1 CONN endurance test (Twisting test+ CONN engage/Disengage endurance test)

Apply 8kgf on the end part of combined connector 10 times each in the (front, rear, left, right) directions perpendicular to axial direction.

And make combine connectors engage and disengage. Perform it 50 times. (Do not use locking device)

6.2 Overcurrent cycle test

Engage and disengage connector with terminal assembled 10 times with hands, and apply the following current 1000 cycles for the connector with electrodes in series at 60° C of ambient temperature.

6.3 Cold temperature test

Leave connector with terminal assembled in temperature chamber of -40°C for 120 hours and estimate below items for each sample dividing two groups.

- A. Estimate voltage drop and leakage current assembled connector.
- B. Leave connector for 2 hours and separate connector with male and female, and then drop it onto the concreate surface more than 10T from 1.5m height 3 items. The method of connector drop follows figure 6-1.

6.4 Cold and hot temperature shock test

Engage and disengage connector with terminal assembled 10 times with hands, and leave it in combined state at -40°C for 2hours, and perform 200 cycles according of the method specified in figure 6-1 and table 6. Then leave it at room temperature for 2 hours or more ((*) follows table 6.).

< Fig 6-2: Test pattern >

Division	High temperature (*)	Connector using part
А	120℃	ENG room
В	80°C	except ENG room
	< Tab	le 6 >

6.5 High temperature	e test
----------------------	--------

Engage and disengage connector with terminal assembled 10 times with hands, and leave it in combined state at the temperature chamber of the table 9 for 300 hours. Then pick it out and leave it until it returns to normal temperature.

6.6 Temperature and humidity cycle test

Engage and disengage connector with terminal assembled 10 times with hands, and leave it at 25°C ambient temperature and 65% relative humidity for 25 hours. And perform 5cycles of the method specified in figure 6-3. Then pick connector out of chamber and dry it for 2 hours or more.

6.7 Dust test

Engage and disengage connector with terminal assembled 10 times with hands, and diffuse 1.5kg Portland cement(JIS R5210) with fan (or others) for 10 seconds per 15 minutes while maintaining 150mm distance from wall in the closed container of 900~1200mm length, width and height, with connector combined. After 1 hour, measure it.

6.8 Oil and liquid test

Engage and disengage connector with terminal assembled 10 times with hands, and perform test each sample with connector combined.

A. Immerge connector in combined state for 2 hours in mixed oil of 50± 2℃ ENG oil (SAE10W) or equivalent oil and

- B. Immerge connector in combined state for1 hour in car gasoline (JIS K2202) at normal temperature, and then pick it out.
- C. Immerge connector in combined state for 1 hour in brake liquid (pure product) at normal temperature, and then pick it out.

D. Immerge connector in combined state for 1 hour in 100% washer liquid (pure product) at normal temperature, and then pick it out.

E. Immerge connector in combined state for 1 hour in 50% LLC (Long life coolant) at normal temperature, and then pick it out.

6.9 Ozone test

Engage and disengage Connector with terminal assembled 10 times with hands, and samples keep at 40°C and 50±5pphm Ozone for 100hour. Then pick connector out of chamber and dry it for 2hours or more.

6.11 Sulfur (SO2) gas test

Engage and disengage connector with terminal assembled 10 times with hands, and expose it in combined state to sulfur gas of $40\pm3^{\circ}$ C,density 10ppm, humidity 90~95%, for 24 hours. Then pick connector out of chamber and dry it for 2 hours or more.

6.12 mechanical shock test

Engage and disengage Connector with terminal assembled 10 times with hands, and apply 1960, 3920, 5880, 9822 stokes in each direction of figure 20 and 21 using assembled male and female samples. Perform test in current application condition of DC13V open voltage and 10mA short circuit current.

6.13 Complex environment endurance test A (Refer to the attached test process #1) Engage and disengage connector with terminal assembled 10 times with hands, and leave it in

combined state in the temperature chamber of 120°C or 80°C (follows table 7) for 48 hours.

And then perform the following vibration test. Then measure instant short circuit according to the method of clause 4.16 for 4 hours for X, Y, Z each.

Follow figure 6-6 for connector attaching method.

< Fig 6-6 Connector attaching method >

Vibration test A (for non-waterproof connector)

Division	Condition
Ambient temperature/humidity	Refer to figure 12, 90~95%
Applied current	Basic current (Connector electrodes in series.)
Current application cycle	120 CYCLE (45 minutes-ON, 15 minutes-OFF)
Vibration acceleration	4.4g
Frequency	20Hz ~ 200Hz (sweep time: 3 minutes or less)
Vibration time	40 hours for X, Y, Z each
Connector attaching method	Test mode A, B, C

< Table 7 >

<Fig. 23 : X, Y, Z vibration direction>

Test process #1

※ In the multipolar connector, Evaluation test at the same time for group 2/3

Rev	Change	Description	Date
Α		Initial Released	20.MAR.'20

Prepared by,	Checked By,	Approved by
JH KIM	GC KWON	GC KWON
Product Engineer	Senior Product Engineer	Product Engineering Manager