The product described in this document has not been fully tested to ensure conformance to the requirements outlined below. Therefore AMP Incorporated makes no representation or warranty, express or implied, that the product will comply with these requirements. Further AMP Incorporated may change these requirements based on the results of additional testing and evaluation. Contact AMP Engineering for further details.

# DESIGN OBJECTIVES 108-60007 METRIC INTERCONNECT SYSTEM (MIS) C-S II CONNECTOR

### 1. SCOPE:

#### 1.1 Contents

This specification covers performance, tests and quality requirements for the crimp-snap Metric Interconnection System. The crimp-snap connector system is terminated using standard crimp technology. Terminated contacts are snapped into receptacle cavities on 2.50mm centerlines. This system is available in 2 through 14 positions and terminated to 22 to 30 AWG tin-plated wire per UL style 1007. The crimp-snap connector style mates with 0.64mm square posts contained in a header assembly. This system provides a reliable interconnection between wires and printed circuit board traces. This 2.5 MIS C-S II system consists of the following part.

| Description        | Drawing Number |
|--------------------|----------------|
| Receptacle Housing | 92009          |
| Receptacle Contact | 292034         |
| Header Ass'y       | 292035, 292056 |

### 1.2 Qualification

When tests are performed on the subject product line, the procedures specified in AMP 109 series specifications shall be used. All inspections shall be performed using the applicable inspection plan and product drawing.

|     |              |                  |          | DR .    |          |            | AMP SHANG     | HAI LTD   |          |
|-----|--------------|------------------|----------|---------|----------|------------|---------------|-----------|----------|
|     |              |                  |          | MAC     | GGIE LIU | AMP        | NO.668 GUI    | PING ROA  | \D       |
|     |              |                  |          | о-к     |          | AIVIE      | SHANGHAI      | CHINA     |          |
|     |              |                  |          | T 1C    | HN LEE   |            | TEL: 64850602 | 2 FAX:648 | 350728   |
|     |              |                  |          | APP     |          | NO         |               | REV       | LOC      |
| С   | FB00-0111-00 | M.Ando           | 18/4/00  | JOH     | IN LEE   | 108-0      | 60007         | С         | ES       |
| В   | REVISED      | Michael<br>Cheng | 23/11/98 |         | TITLE    |            |               |           | <u> </u> |
| A   | REVISED      | M.Liu            | 11/11/96 | PAGE    | METRIC   | INTERCONNI | NECT SYSTE    | EM (MIS   | )        |
| 0   | RELEASED     | J.Lee            | 15/5/96  | 1 OF 11 | C.       | S II CONNE | CTOR          |           |          |
| LTR | REVISION     | APP              | DATE     |         |          |            |               |           |          |
|     | RECORD       |                  |          |         |          |            |               |           |          |

#### 2. APPLICATION DOCUMENTS:

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

### 2.1 AMP Documents

A. 109-1: General Requirements for Test Specifications

B. 109 series: Test Specification as indicated in Figure 1 (Comply with

MIL-STD-202, MIL-STD-1344 and ETA RS-364)

C. Corporate Bulletin 401-76: Cross-reference between AMP Test Specifications

and Military or Commercial Documents.

D. 114-58000 : Application Specification

E. 501- : Test Report

### 3. REQUIREMENTS:

### 3.1 Design and Construction:

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

### 3.2 Materials:

A. Contact:

Receptacle contact: Phosphor Bronze, bright tin plating

Post Contact: Brass, bright tin-lead over copper plating

B. Housing:

Receptacle Housing: 66 Nylon (UL94V-0)

Post Header Housing: 66 Nylon (UL94V-0)

### 3.3 Rating

A. Voltage: 250 VAC & DC

B. Operating Temperature: -25 to 105°C

C. Current: AWG#22 --- 3A

AWG#24 --- 3A

AWG#26 --- 3A

AWG#28 --- 2A

AWG#30 --- 2A

3.3.1 Applicable wires (Note: for compatibility of the wires for termination, the wires must be evaluated respectively, by the manufacturers, brand, tradenames and product catalog numbers)

A. Wire Size: #30AWG - #22AWG (0.06mm<sup>2</sup>/0.30mm<sup>2</sup>)

B. Insulation Diameter: 1.00mm/1.9mm

|     |                                                                                         | PAGE | NO        | REV | LOC |
|-----|-----------------------------------------------------------------------------------------|------|-----------|-----|-----|
| AMP | AMP SHANGHAI LTD<br>NO.668 GUI PING ROAD<br>SHANGHAI CHINA<br>TEL:64850602 FAX:64850728 | 2    | 108-60007 | С   | ES  |

# 3.3.2 Applicable Printed Circuit Board

A. Board Thickness: 1.0mm/1.6mmB. Hole Diameter: 0.92mm/1.02mm

# 3.4 Performance and Test Description

The product is designed to meet the electrical, mechanical and environmental performance requirements specified in Figure 1. All tests are performed at ambient environmental conditions per AMP Specification 109-1 unless otherwise specified.

## 3.5 Test Requirements and Procedures Summary

| Para  | Test Items   | Requirements                          | Procedures                            |
|-------|--------------|---------------------------------------|---------------------------------------|
| 3.5.1 | Confirmation | Product shall be conforming to        | Visually, inspected per applicable    |
|       | of Product   | the requirements of applicable        | quality inspection plan.              |
|       |              | product drawing and                   |                                       |
|       |              | Application Specification.            |                                       |
|       |              | Electrical Requirements               |                                       |
| 3.5.2 | Termination  | 10m ohms max. (initial)               | Subject mated contacts assembled in   |
|       | Resistance   | 20m ohms max (final)                  | housing to closed circuit current of  |
| 1     | (Low Level)  |                                       | 10mA max at open circuit voltage of   |
|       |              |                                       | 50mV max Fig 3                        |
|       |              | · · · · · · · · · · · · · · · · · · · | AMP Spec 109-6-4                      |
| 3.5.3 | Dielectric   | No creeping discharge nor             | 1 k VAC for 1 minute. Test between    |
|       | Strength     | flashover shall occur. Current        | adjacent circuits of mated.           |
|       |              | leakage: 5 mA Max.                    | AMP Spec 109-29-1                     |
|       |              |                                       |                                       |
| 3.5.4 | Insulation   | 1000 M ohms min.                      | Impressed voltage 500 V DC Test       |
|       | Resistance   |                                       | between adjacent circuits of mated.   |
|       |              |                                       | AMP Spec 109-28-4                     |
| 3.5.5 | Temperature  | 30°C maximum temperature              | Measure temperature rising by         |
|       | Rising       | rise at specified current.            | energized current.                    |
|       |              |                                       | AMP Spec 109-45-1                     |
|       |              | Physical Requirements                 |                                       |
| 3.5.6 | Vibration    | No discontinuities greater than       | Subject mated connectors to 10-55-10  |
|       |              | 1 microsecond.                        | Hz traversed in 1 minute at 0.06 inch |
|       |              | See Note (a)                          | total excursion. 2 hours in each of 3 |
|       |              |                                       | mutually perpendicular planes.        |
|       |              |                                       | AMP Spec 109-21-1                     |

Figure 1

|     |                                                                                         |           | NO        | REV | LOC |
|-----|-----------------------------------------------------------------------------------------|-----------|-----------|-----|-----|
| АМР | AMP SHANGHAI LTD<br>NO.668 GUI PING ROAD<br>SHANGHAI CHINA<br>TEL:64850602 FAX:64850728 | PAGE<br>3 | 108-60007 | С   | ES  |

| Para  | Test Items     | Requirements                    | Procedures                               |
|-------|----------------|---------------------------------|------------------------------------------|
| 3.5.7 | Physical Shock | No discontinuities greater than | Subject mated connectors to 50 G's       |
|       |                | 1 microsecond                   | half sine shock pulses of 11             |
| *     |                | See Note (a)                    | milliseconds duration applies along 3    |
|       |                |                                 | mutually perpendicular planes, 18        |
| •     |                |                                 | total shocks.                            |
|       |                |                                 | AMP Spec 109-26-1                        |
| 3.5.8 | Hammering      | Termination Resistance (Low     | Subject mated connector to under         |
|       | Shocks         | Level)                          | 10000 cycles of repeated hammering       |
|       |                | 20m ohms max (final)            | shocks DC 10 V, 1 mA applied.            |
|       |                | No evidence of abnormalities    | During the test, the circuit shall be    |
|       |                |                                 | monitored for fluctuation of electrical  |
|       |                |                                 | resistance as shown in Fig 4             |
| 3.5.9 | Connector      | <u>Initial</u>                  | Measure force necessary to mate          |
|       | Mating Force   |                                 | connector assemblies with detent         |
|       |                | a. For P/N 292035               | latches to header using free floating    |
|       |                | 2Pos 30.38N (3.1kgf)max         | fixtures at rate of 0.5 inch per minute. |
|       |                | 3Pos 34.30N (3.5kgf)max         | AMP Spec 109-42                          |
|       |                | 4Pos 38.22N (3.9kgf)max         | Condition A.                             |
|       |                | 5Pos 42.14N (4.3kgf)max         |                                          |
|       |                | 6Pos 46.06N (4.6kgf)max         |                                          |
|       |                | 7Pos 49.98N (5.1kgf)max         |                                          |
|       |                | 8Pos 53.90N (5.5kgf)max         |                                          |
|       |                | 9Pos 57.82N (5.9kgf)max         |                                          |
|       |                | 10Pos 61.74N (6.3kgf)max        |                                          |
|       |                | 11Pos 65.66N (6.7kgf)max        |                                          |
|       |                | 12Pos 69.58N (7.1kgf)max        |                                          |
|       |                | 13Pos 73.50N (7.5kgf)max        |                                          |
|       |                | 14Pos 77.42N (7.9kgf)max        |                                          |
|       |                | b. For 292056                   |                                          |
|       |                | 2Pos 37.24N (3.8kgf)max         |                                          |
|       |                | 3Pos 40.18N (4.1kgf)max         |                                          |
|       |                | 4Pos 43.12N (4.4kgf)max         |                                          |
|       |                | 5Pos 46.06N (4.7kgf)max         |                                          |
|       | 1              | 6Pos 49.98N (5.1kgf)max         |                                          |
|       |                | 7Pos 53.90N (5.5kgf)max         |                                          |
|       |                | 8Pos 57.82N (5.9kgf)max         |                                          |
|       |                |                                 |                                          |
|       |                |                                 |                                          |

Figure 1 (continue)

| Para   | Test Items   |          | Requir          | ements      | Procedures                              |
|--------|--------------|----------|-----------------|-------------|-----------------------------------------|
| 3.5.9  | Connector    |          | After 50 cycles |             |                                         |
|        | Mating Force |          |                 |             |                                         |
|        |              | a. For P | /N 29203        | 35          |                                         |
| •      |              | 2Pos     | 29.40N          | (3.0kgf)max |                                         |
|        |              | 3Pos     | 32.34N          | (3.3kgf)max |                                         |
|        |              | 4Pos     | 35.28N          | (3.6kgf)max |                                         |
|        |              | 5Pos     | 38.22N          | (3.9kgf)max |                                         |
|        |              | 6Pos     | 41.16N          | (4.2kgf)max |                                         |
|        | -            |          | 44.10N          | (4.5kgf)max |                                         |
|        |              | 8Pos     | 47.04N          | (4.8kgf)max |                                         |
|        |              | 1        | 49.98N          | (5.1kgf)max |                                         |
|        |              | 1        | 52.92N          | (5.4kgf)max |                                         |
|        |              | 1        | 55.86N          | (5.7kgf)max |                                         |
|        |              | 1        | 58.80N          | (6.0kgf)max |                                         |
|        |              | 1        | 61.74N          | (6.3kgf)max |                                         |
|        |              | 14Pos    | 64.68N          | (6.6kgf)max |                                         |
|        |              | b. For P | /N 2920:        | 56          |                                         |
|        |              | 1        | 33.32N          | (3.4kgf)max |                                         |
|        |              | 1        | 36.26N          | (3.7kgf)max |                                         |
|        |              | 1        | 39.20N          | (4.0kgf)max |                                         |
|        |              | 1        | 42.14N          | (4.3kgf)max |                                         |
|        |              | 6Pos     | 45.08N          | (4.6kgf)max | ·                                       |
|        |              | 7Pos     | 48.02N          | (4.9kgf)max |                                         |
|        |              | 8Pos     | 50.96N          | (5.2kgf)max |                                         |
| 3.5.10 | Connector    |          | Init            | ial         | Measure force necessary to unmate       |
|        | Unmating     | 2Pos     | 8.82N           | (0.9kgf)min | connector assemblies with deten         |
|        | Force        | 3Pos     | 8.82N           | (0.9kgf)min | latches from header at rate of 0.5 incl |
|        |              | 4Pos     | 9.80N           | (1.0kgf)min | per minute.                             |
|        |              | 5Pos     | 9.80N           | (1.0kgf)min | AMP Spec 109-42                         |
|        |              | 6Pos     | 11.76N          | (1.2kgf)min | Condition A                             |
|        |              | ł        | 11.76N          | (1.2kgf)min |                                         |
|        |              | 8Pos     | 13.72N          | (1.4kgf)min |                                         |
|        |              |          | 13.72N          | (1.4kgf)min |                                         |
|        |              | 10Pos    | 15.68N          | (1.6kgf)min |                                         |
|        |              | 11Pos    | 15.68N          | (1.6kgf)min |                                         |
|        |              | 12Pos    | 17.64N          | (1.8kgf)min |                                         |
|        | :            | 13Pos    | 17.64N          | (1.8kgf)min |                                         |
|        |              | 14Pos    |                 | (2.0kgf)min |                                         |
|        |              |          |                 |             |                                         |
|        |              |          |                 |             |                                         |

# Figure 1 (continue)

| AMP SHANGHAI LTD NO.668 GUI PING ROAD SHANGHAI CHINA TEL: 64850602 FAX: 64850728 | 108-60007 | REV<br>C | LOC<br>ES |
|----------------------------------------------------------------------------------|-----------|----------|-----------|
|----------------------------------------------------------------------------------|-----------|----------|-----------|

| Para   | Test Items     | Requirements                 | Procedures                           |
|--------|----------------|------------------------------|--------------------------------------|
| 3.5.10 | Connector      | After 50 cycles              | ***                                  |
|        | Unmating       | 2Pos 6.86N (0.7kgf)min       |                                      |
| ,      | Force          | 3Pos 6.86N (0.7kgf)min       |                                      |
|        |                | 4Pos 7.84N (0.8kgf)min       |                                      |
|        |                | 5Pos 7.84N (0.8kgf)min       |                                      |
|        |                | 6Pos 9.80N (1.0kgf)min       | ·                                    |
|        |                | 7Pos 9.80N (1.0kgf)min       |                                      |
|        |                | 8Pos 11.76N (1.2kgf)min      |                                      |
|        |                | 9Pos 11.76N (1.2kgf)min      |                                      |
|        |                | 10Pos 12.74N (1.3kgf)min     |                                      |
|        |                | 11Pos 12.74N (1.3kgf)min     |                                      |
| •      |                | 12Pos 13.72N (1.4kgf)min     |                                      |
|        |                | 13Pos 14.70N (1.5kgf)min     |                                      |
|        |                | 14Pos 15.68N (1.6kgf)min     |                                      |
|        |                |                              |                                      |
| 3.5.11 | Post Retention | 22.54N (2.3kgf)min           | Apply axial load of 2.3kgf by        |
|        | Force          |                              | pushing on the post. Measure post    |
|        |                |                              | retention force.                     |
|        |                |                              | AMP Spec 109-30                      |
| 3.5.12 | Solderability  | Wet Solder Coverage: 95% min | Solder Temperature: 245±5°C          |
|        |                |                              | Immersion Duration: 3± 1/2 second    |
|        |                |                              | AMP Spec 109-11-1                    |
| 3.5.13 | Crimp Tensile  | AWG30 - 0.5kgf min           | Apply an axial pull-off load to      |
|        |                | AWG28 - 1.0kgf min           | terminate wire of contact.           |
|        |                | AWG26 - 2.0kgf min           | AMP Spec 109-16                      |
|        |                | AWG24 - 3.0kgf min           |                                      |
|        |                | AWG22 - 5.0kgf min           |                                      |
|        |                |                              |                                      |
| 3.5.14 | Contact        | 14.7N (1.5kgf)min            | Apply axial load of 2 kgf by pulling |
|        | Retention      |                              | on terminated contact.               |
|        | Force          |                              | AMP Spec 109-30                      |
|        |                | Environmental Requirements   |                                      |
| 3.5.15 | Resistance to  | No physical damage shall     | Test connector on PCB.               |
|        | Soldering Heat | occur.                       | Solder Temperature: 260±5°C          |
|        |                | See Note (a)                 | Immersion Duration: 10± 1 second     |
|        |                |                              | AMP Spec 109-63-2                    |
| 3.5.16 | Thermal Shock  | 20 milliohms maximum final   | Subject mated connector assemblies   |
|        |                | termination resistance, dry  | on 25 cycles                         |
|        |                | circuit                      | AMP Spec 109-22, -55°C & 85°C        |
|        |                | See Note (a)                 |                                      |

# Figure 1 (continue)

|     |                                                                                         |           | NO        | REV | LOC |
|-----|-----------------------------------------------------------------------------------------|-----------|-----------|-----|-----|
| AMP | AMP SHANGHAI LTD<br>NO.668 GUI PING ROAD<br>SHANGHAI CHINA<br>TEL:64850602 FAX:64850728 | PAGE<br>6 | 108-60007 | С   | ES  |

| Para   | Test Items                                | Requirements                                                                 | Procedures                                                                                                                                                                             |
|--------|-------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.5.17 | Humidity,<br>Steady State                 | Insulation resistance (final) 500 M ohms min. Termination resistance         | Mated connector, 90-95% R.H., 40°C 240 hours AMP Spec 109-23-2                                                                                                                         |
|        |                                           | 20 M ohms max (final) See Note (a)                                           | Method II                                                                                                                                                                              |
| 3.5.18 | Salt Spray                                | 20 m ohms max (final)                                                        | Subject mated to 5± 1% salt concentration for 48 hours AMP Spec 109-24 Class B                                                                                                         |
| 3.5.19 | Industrial Gas<br>(SO2)                   | 20 m ohms max (final)                                                        | SO2 Gas: 3± 1 ppm, 95% R.H. 40± 2°C, 96 hours                                                                                                                                          |
| 3.5.20 | Ammonia                                   | 20 m ohms max (final)                                                        | 28% anmonia solution placed in a desiccator for 40 min.                                                                                                                                |
| 3.5.21 | Temperature<br>Life (Heat<br>Aging)       | 20 milliohms maximum final termination resistance, dry circuit. See Note (a) | Subject mated connector assemblies to temperature life at 85 °C±2°C for 250 hours.  AMP Spec 109-43                                                                                    |
| 3.5.22 | Resistance to cold                        | 20 m ohms max (final)                                                        | -25°C ± 3°C, 48 hours<br>AMP Spec 109-5108-2<br>Condition B                                                                                                                            |
| 3.5.23 | Durability<br>(Repeated<br>mate/unmating) | 20 m ohms max (final) No evidence of undue plating wear.                     | No of cycles: 50 cycles AMP Spec 109-27                                                                                                                                                |
| 3.5.24 | Humidity -<br>Temperature<br>Cycling      | 20 milliohms maximum final termination resistance, dry circuit. See Note (a) | Subject mated connector assemblies to 10 humidity-temperature cycles between 25 and 65°C at 95% R.H. AMP Spec 109-23 Method III.  Condition B, with cold shock at -10°C, less step 7b. |

a) Shall remain mated and show no evidence of damage, cracking or chipping.

Figure 1 (end)

|     |                                                                                           | ,         |           | T ==:. |     |
|-----|-------------------------------------------------------------------------------------------|-----------|-----------|--------|-----|
|     |                                                                                           |           | NO        | REV    | LOC |
| АМР | AMP SHANGHAI LTD<br>NO.668 GUI PING ROAD<br>SHANGHAI CHINA<br>TEI: 64850602 FAX: 64850728 | PAGE<br>7 | 108-60007 | С      | ES  |

#### Product Qualification and Requalification Test (a) 3.6

| Test of Examination                      |                   | Test Group |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|------------------------------------------|-------------------|------------|------|---------|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                          |                   | 2          | 3    | 4       | 5     | 6         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                          | Test Sequence (b) |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Examination of Product                   | 1,11              | 1,9        | 1,10 | 1,9     | 1,7   | 1,6       | 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Termination Resistance Specified Current |                   |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Termination resistance dry circuit       | 3,10              | 2,7        | 4,6  | 2,4,6,8 | 2,4,6 | 2,4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Dielectric Withstanding Voltage          |                   |            | 9,3  |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Insulation Resistance                    |                   |            | 8,2  |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Temperature Rise vs Curret               |                   | 3,8        |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Current Cycling                          |                   |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Voltage Standing Wave Radio              |                   |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Permeability                             |                   |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Corona                                   |                   |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Vibration                                | 8                 | (c)6       |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Physical Shock                           | 9                 |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Mating Force                             | 2,6               |            |      |         | !     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Unmating Force                           | 4,7               |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Contact Insertion Force                  |                   |            |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Contact Retention                        |                   |            |      |         | 9     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Crimp Tensile                            | <u> </u>          |            |      | 10      |       |           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Durability                               | 5                 |            |      |         |       |           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Housing Panel Retention                  |                   | 1          |      |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Housing Lock Strength                    |                   |            |      |         |       |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Solderability                            |                   |            |      |         |       | 2         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Thermal Shock                            |                   |            | 5    |         |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Humidity - Temperature Cycling           |                   | 4          | 7    |         |       |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Humidity, Steady State                   |                   |            |      | 5       |       | ļ <u></u> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Temperature Life                         |                   | 5          |      |         |       | ļ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Hammering Shocks                         |                   |            |      |         | 3     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Post Retention Force                     |                   |            |      |         | 8     | <u> </u>  | $oldsymbol{igstyle igstyle igytyle igstyle igytyle igstyle igytyle igytyle igytyle igytyle igytyle igytyle igstyle igytyle igytyle$ |  |  |
| Resistance to Soldering Heat             |                   |            |      |         |       | 5         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Salt Spray                               |                   |            |      |         | 5     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Industrial Gas (SO2)                     |                   |            |      | 7       |       |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Ammonia                                  |                   |            |      |         |       | 3         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Resistance to Cold                       |                   |            |      | 3       |       | <u> </u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

# Figure 2

(a)

See paragraph 4.2
Numbers indicate sequence in which tests are performed (b)

Discontinuities shall not be measured (c)

|     |                                                                                           |           | NO        | REV | LOC |
|-----|-------------------------------------------------------------------------------------------|-----------|-----------|-----|-----|
| АМР | AMP SHANGHAI LTD<br>NO.668 GUI PING ROAD<br>SHANGHAI CHINA<br>TEL: 64850602 FAX: 64850728 | PAGE<br>8 | 108-60007 | С   | ES  |

### 4. QUALITY ASSURANCE PROVISIONS

### 4.1 Qualification Testing

## A. Sample Selection

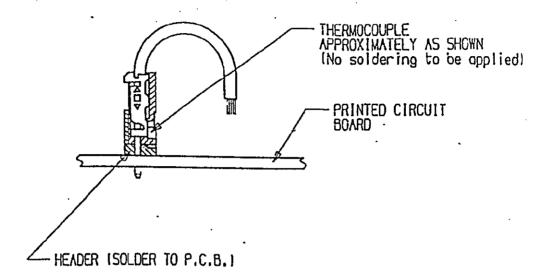
Connector assemblies shall be prepared in accordance with applicable specification and shall be selected at random from current production. All test groups shall consist of six (6) connector assemblies (four 2 position and two 14 position). Two 2 position shall consist of contacts terminated with the AWG#22 wire while the other two shall consist of contacts terminated with the AWG#30 wire. The two 14 position connector assemblies shall be each of AWG#22 and #30. Each wire shall consist of solid, stranded and perfused or overcoated wire in accordance with UL style 1007. Stranded wire shall be composed of 7 strands. All wire shall be terminated accordance with AMP Specifications 114-58000.

# B. Test Sequence

Qualification inspection shall be verified by testing samples as specified in figure 2.

### 4.2 Requalification Testing

If changes significantly affecting form, fit or function are made to product or manufacturing process, product assurance shall coordinate requalification testing, consisting of all or part of original testing sequence as determined by development/product, quality and reliability engineering.


### 4.3 Acceptance

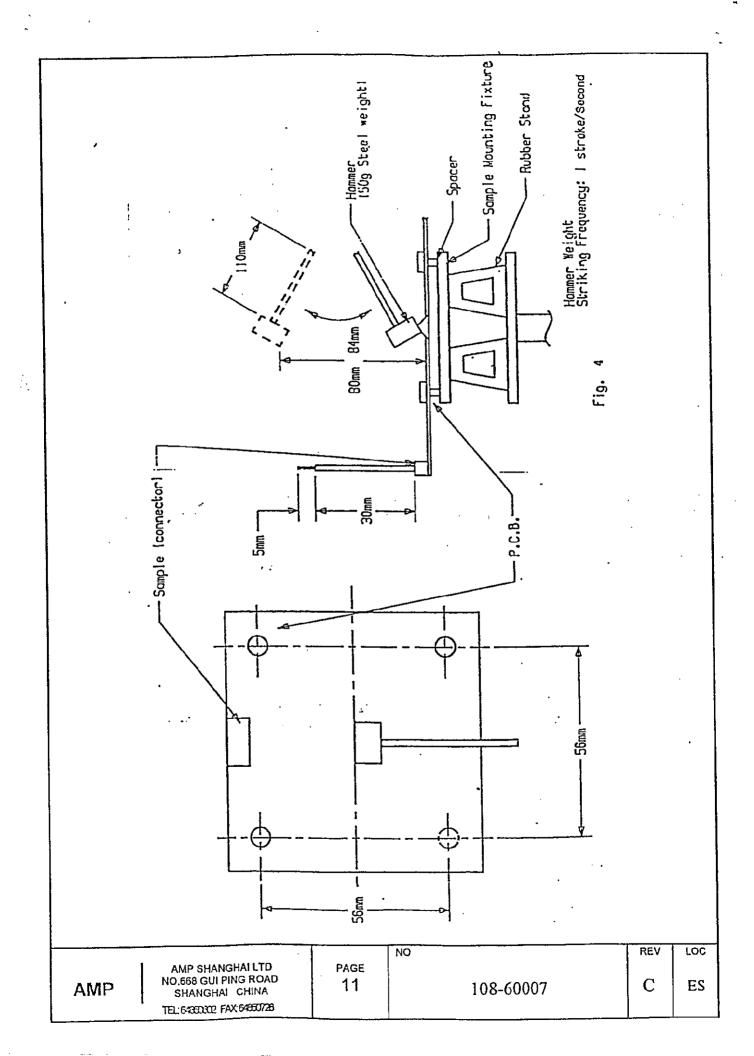
Acceptance is based on verification that product meets requirements of Figure 1. Failure attributed to equipment, test setup or operator deficiencies shall not disqualify product. When product failure occurs, corrective action shall be taken and samples resubmitted for qualification. Testing to confirm corrective action is required before resubmittal.

### 4.4 Quality Conformance Inspection

Applicable AMP quality inspection plan will specify sampling acceptable quality level to be used. Dimensional and functional requirements shall be in accordance with applicable product drawing and this specification.

| · · · · · · · · · · · · · · · · · · · |                                                                                           |           |           |     |     |
|---------------------------------------|-------------------------------------------------------------------------------------------|-----------|-----------|-----|-----|
|                                       | :                                                                                         |           | NO        | REV | LOC |
| АМР                                   | AMP SHANGHAI LTD<br>NO.668 GUI PING ROAD<br>SHANGHAI CHINA<br>TEL: 64850602 FAX: 64850728 | PAGE<br>9 | 108-60007 | С   | ES  |




### NOTES:

- (1) MEASURE BY 4-WIRE METHOD
- TERMINATION RESISTANCE EQUALS MILLIVOLTS DIVIDED BY TEST CURRENT LESS RESISTANCE OF WIRE.
- AFTER SOLDERING, BOARD AND POSTS SHALL BE CLEANED TO REMOVE ALL FLUX AND CONTAMINANTS.

FIGURE 3
TEMPERATURE & TERMINATION RESISTANCE MEASUREMENT

| i   |                                                                                          |            |           |     |     |
|-----|------------------------------------------------------------------------------------------|------------|-----------|-----|-----|
|     |                                                                                          |            | NO        | REV | LOC |
| AMP | AMP SHANGHAI LTD<br>NO.668 GUI PING ROAD<br>SHANGHAI CHINA<br>TB: 64850602 FAX: 64850728 | PAGE<br>10 | 108-60007 | С   | ES  |

:



.