SIZE (2.8) FASTON TERMINALS

1. SCOPE

1.1. Content

This specification covers the performance, tests and quality requirements for the 110 Series FASTON Receptacle and TAB. Applicable product part numbers are as follows,

Applicable Part No.	Cross-sectional Area of Applicable Wire	Material
1494208-1	0.20 ~ 0.50 mm ²	Phosphor Bronze
1494209-1	0.20 ~ 0.50 mm ²	Phosphor Bronze
1494209-2	0.20 ~ 0.50 mm ²	Phosphor Bronze
1494210-1	0.30 ~ 0.80 mm ²	Brass
1494210-2	0.30 ~ 0.80 mm ²	Brass
1494217-1	0.30 ~ 0.80 mm ²	Phosphor Bronze
1494218-1	0.30 ~ 0.80 mm ²	Brass
1494219-1	0.30 ~ 0.80 mm ²	Phosphor Bronze
1494220-1	0.30 ~ 0.80 mm ²	Brass
1930002-2	0.30 ~ 0.80 mm ²	Phosphor Bronze

Table 1

1.2 Qualification

When tests are performed on the subject product line, the procedures specified in EIA-364 series specifications shall be used. All inspections shall be performed using the applicable inspection plan and product drawings.

2. APPLICABLE DOCUMENTS

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawings, the product drawings shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

Boris Wong	18-Oct-2002	S. F. Shum	8-Nov-2002
DR	DATE	APVD	DATE

2.1 Tyco Specifications

a. 109-1: General Requirements for Test Specifications

b. 109 Series: Test Specifications as indicated in Table 2.

c. 114-58500: Application Specifications.

d. 501-58500: Test Report

3. REQUIREMENTS

3.1 Design and Construction

FASTON Terminal shall be of the design, construction and physical dimensions specified on the applicable product drawings.

3.2 Materials

Terminals shall be made of copper alloy, refer to Table 1.

3.3 Current Rating:

Wire Size	<u>Current</u>
0.20 mm ²	1 AMPERES
0.30 mm ²	2 AMPERES
0.50 mm ²	3 AMPERES
0.80 mm ²	4 AMPERES

3.4 Performance and Test Description

Receptacles and Tabs shall be designed to meet the Electrical, Mechanical and Environmental performance requirements specified in Table 2.

Rev B 2 of 9

TEST REQUIREMENTS AND PROCEDURES SUMMARY

Para.	Test Description	Requirements	Procedures				
	APPERARANCE AND DIMENSIONS						
3.4.1	Examination	Meet requirements of	Visual, dimensional and functional				
	of Product	product drawing and	per applicable Tyco inspection plans				
		applicable inspection plan	and EIA-364-18A.				
		and 114-58500.					
	1	ELECTRICAL	-				
3.4.2	Termination	Termination Resistance	The termination resistance is				
	Resistance	shall be not greater than	measured by millivolt drop method.				
	between	3mΩ.	The terminals shall be connected				
	terminal and		with wire in specified size. Apply the				
	crimped wire		DC supply shown according to				
			Table 3 between the points A-B.				
			Measure the millivolt drop between				
			points C-D and calculate the				
			resistance (R _{C-D}). See Fig. 1. Per				
			209-10.				
3.4.3	Contact	The contact resistance	Contact Resistance is measured by				
	Resistance	shall not be greater than	millivolt drop method after 3 mating				
	between plug	2mΩ.	& unmating cycles. Mate the				
	and recept.		receptacle and the gage tab without				
	•		wiring, and apply the 2A DC supply				
			between the points A-B. See Fig. 2				
			Measure the millivolt drop between				
			points C-D, and calculate the				
			Contact Resistance (R _{C-D}). Per 209-10.				
			200 10.				

Rev B 3 of 9

D	Test	D!	Breadures		
Para.	Description	Requirements	Procedures		
3.4.4	Temperature	The temperature rise	of Temperature rise must be		
	Rise	the crimping area shall n	ot measured by using a set of		
		be greater than 30 °C.	thermocouples. The terminals shall		
			be connected with wire in specified		
			size, at least 508 mm in length. The		
			specimens shall be soldered or		
			mated together. See Figure 3.		
			Record the reading after		
			temperature rising becomes stabilized (+/- 0.5°C during more		
			than 5 minutes) under rate current.		
			Per EIA-364-70.		
3.4.5	Current cycling	Temperature rise < 85°	C. The terminals shall be connected		
		Temperature rise duri	g with wire in specified size. The		
		500 th cycle shall not l	e specimens shall be soldered or		
		more than 15 °C high	er mated together. Subject specimens		
		than the temperature ris	to 500 cycles at 200% of the rated		
		during 24 th cycl	e. current for 45 minutes "On", 15		
		Termination resistan	minutes "Off" per EIA-364-55,		
		shall not be greater than	5 testing condition D, testing method		
		mΩ.	4.		
		MECHANIC	AL		
3.4.6	Crimp Tensile	Crimp tensile Strength	Fasten the stripped free end of the		
	Strength		crimped wire to the tensile testing		
	3	Wire Size N (Mi			
		<u></u>	pull-off load along the wire with		
		0.20 mm ² 22	travel rate of 25.4 mm per minute,		
		0.30 mm ² 36	see Fig. 4. Record the crimping		
		0.50 mm ² 58	max. slack loading per EIA-364-8A.		
		0.80 mm ² 89	Insulation barrel opened.		
		3.00 11111			

Rev B 4 of 9

Para.	Test Description	Requirements	Procedures		
3.4.7	Contact	53.0 N Max.	Fasten a receptacle contact to the		
(**)	Mating Force		head of tensile testing machine, and		
	(Receptacle)		operate the head to insert gage tab		
			(Figure 5.) into receptacle contact		
			with the speed at a rate of		
			approximately 25.4 mm per minute.		
			Record the max. contact mating		
			force per EIA-364-05.		
3.4.8	Contact	Initial: 62 Max.	Fasten a receptacle contact, which		
(**)	Umating Force	At 6th. Cycle: 9.0 Min	is mated with counterpart gage tab		
	(Receptacle)		(Figure 5.) to the head of tensile		
			testing machine, and operate the		
			head to extract gage tab from the		
			receptacle contact with the speed at		
			a rate of approximately 25.4 mm per		
			minute. Record the max. contact		
			unmating force per EIA-364-05.		
		ENVIRONMENT	'AL		
3.4.9	Temperature	Termination resistance of	The terminals shall be connected		
	life	the mated wire-crimped	with wire in specified size. Subject		
		terminals shall not be	the specimens at the rate current		
		greater than 5 mΩ.	under 90°C for 250 hours.		
			EIA-364-17B, method B.		

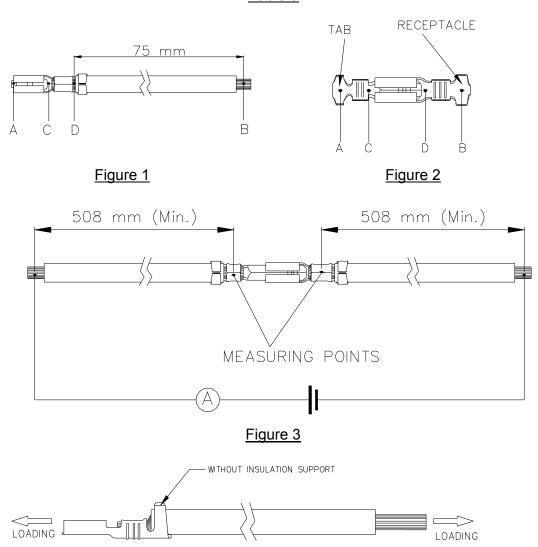
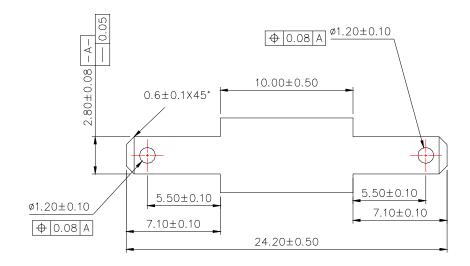

^{**} For part of 1930002-2, the test tab's insertion direction as Figure 6.

Table 2.

Rev B 5 of 9

Wire Size (Nominal) mm ²	Test current (A)	
0.20	4.50	
0.30	9.00	
0.50	11.0	
0.80	16.0	


Table 3

TENSILE STRENGTH TESTING SPEED: 25.4mm/Min.

Figure 4

Rev B 6 of 9

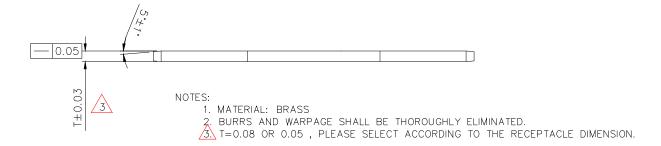


Figure 5

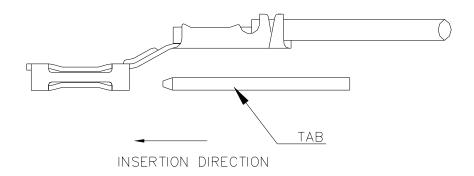


Figure 6 (For 1930002-1 only)

Rev B 7 of 9

3.5 Testing Condition

- 1) Unless otherwise specified, tests shall be carried out at room temperature 15~35°C, relative humidity 45~75% and atmospheric pressure 86.7~106.7kPa.
- 2) For the test of Para. 3.4.3, Para. 3.4.7, Para. 3.4.8, a receptacle and a tab not connected with wire shall be used. If there is not specified, the wire crimped to the terminal is about 100 mm. Number of specimens for all test groups shall be as shown in Table 4.

Test Group	Number of Specimens (Pcs)
1	5 per Wire Size per P/N
2	10 per every receptacle and tab without wiring
3	5 per Wire Size per P/N
4	5 per every receptacle without wiring
5	5 per Wire Size per P/N

Table 4

3.6 Test Sequence

	Test Item	Test Group				
Para.		1	2	3	4	5
		Test Sequence (1)				
3.4.1	Examinations of Product	1	1	1	1,4	1,5
3.4.2	Termination Resistance between terminal and crimped wire	2,5				2,4
3.4.3	Contact Resistance of between gage Tab and recept.		2			
3.4.4	Temperature Rise	3				
3.4.5	Current cycling	4				
3.4.6	Crimp Tensile Strength			2		
3.4.7	Contact Insertion Force				2	
3.4.8	Contact Removal Force				3	
3.4.9	Temperature life					3

Note

(1) Numbers indicated sequence in which tests are performed.

Table 5

Rev B 8 of 9

4. QUALITY ASSURANCE PROVISIONS

4.1 Qualification Testing

a. Sampling

The product specimens to be employed for the tests shall be prepared in accordance with the specified crimping procedures having correct crimp height with the use of the wires of correct sizes specified in Table 1. No specimens shall be reused unless otherwise specified. All the specimens shall be selected randomly from current production.

b. Test Sequence

Qualification inspection shall be verified by testing specimens as specified in Para.3.6 Table 5.

c. Acceptance

- (1) All specimens tested in accordance with this specification shall meet the requirements listed.
- (2) Failures attributed to equipment, test set up, or operator deficiencies shall not disqualify the product. When product failures occur, corrective action shall be taken and specimens resubmitted for gualification.

4.2 Requalification Testing

If changes significantly affecting form, fit, or function are made to the product or to the manufacturing process, product assurance shall coordinate requalification tests, consisting of all or part of the original testing sequence as determined by development/product, quality, and reliability engineering.

4.3 Quality Conformance Inspection

Applicable Tyco quality inspection plans shall specify the sampling acceptable quality level to be used. Dimensional and functional requirements shall be in accordance with the applicable product drawing and this specification.

Rev B 9 of 9