Fix-in Squib Connector( $\phi$  1mm Socket 2 Position)

### 1. Scope:

#### 1.1 Contents

This specification covers the requirements for product performance, test methods and quality assurance provisions of Fix-in Squib Connector( $\phi$  1mm Socket 2 Position).

Applicable product description and part numbers are as shown in Appendix 1.

### 2. Applicable Documents:

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

### 2.1 TE Specifications:

- A. 109-5000: Test Specification, General Requirements for Test Methods
- B. 114-5234: Application Specification Crimping of Squib Contacts
- C. 501-78382: Qualification Test Report

### 2.2 Commercial Standards and Specifications.

- A. JASO D605: Multi-pole Connector for automobiles
- B. JASO D7101: Test Methods for Plastic Molded Parts
- C. JIS C3406: Low-Voltage Wires and Cables for Automobiles
- D. JIS D0203: Method of Moisture, Rain and Spray Test for Automobile Parts
- E. JIS D0204: Method of High and Low Temperature Test for Automobile Parts
- F. JIS D1601: Vibration Testing Method for Automobile Parts
- G. JIS R5210: Portland Cement

## 3. Requirements:

3.1 Design and Construction:

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

### 3.2 Material:

A. Contact:

| Description             | Material     | Finish                                               |  |  |  |
|-------------------------|--------------|------------------------------------------------------|--|--|--|
| Φ1mm Socket<br>(Female) | Copper alloy | Selective-Gold and Tin plating over Ni under plating |  |  |  |
|                         |              |                                                      |  |  |  |

Fig.1

- B. Housing : PBT
- C. Other : Ferrite

### 3.3 Ratings:

- A.: Temperature Rating : -40°C to 105°C
- 3.4 Performance Requirements and Test Descriptions:

The product shall be designed to meet the electrical, mechanical and environmental performance requirements specified in Fig.2 and Fig.3. All tests shall be performed in the room temperature, unless otherwise specified.

# 3.5 Test Requirements and Procedures Summary:

| Para.                   | Test Items                                          | Requirements                                                                                      | Procedures                                                                                                                                                                                                                    |  |  |  |  |  |
|-------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3.5.1                   | Examination of<br>Product                           | Meet requirements of product<br>drawing and TE Specification<br>114-5234                          | Visually inspection.<br>No physical damage.                                                                                                                                                                                   |  |  |  |  |  |
|                         | Electrical Requirements                             |                                                                                                   |                                                                                                                                                                                                                               |  |  |  |  |  |
| 3.5.2                   | Termination<br>Resistance<br>(Low Level)            | 3mΩMax.(Initial)<br>10mΩMax.(Final)                                                               | Subject mated contacts assembled<br>in housing to 20mV Max.<br>open circuit at 10mA.<br>Fig.4<br>TE Spec. 109-5311-1                                                                                                          |  |  |  |  |  |
| 3.5.3                   | Dielectric<br>Withstanding Voltage                  | No creeping discharge nor flashover shall occur.                                                  | Mated connectors.<br>1kVAC for 1 min.<br>Fig.5<br>TE Spec. 109-5301                                                                                                                                                           |  |  |  |  |  |
| 3.5.4                   | Insulation Resistance                               | 100MΩ Min.(Initial)<br>100MΩ Min.(Final)                                                          | Mated connectors.<br>Impressed voltage 500VDC<br>Fig.5<br>TE Spec. 109-5302                                                                                                                                                   |  |  |  |  |  |
| Mechanical Requirements |                                                     |                                                                                                   |                                                                                                                                                                                                                               |  |  |  |  |  |
| 3.5.5                   | Physical Shock                                      | No electrical discontinuity greater<br>than 100µsec. Shall occur.<br>Final 10mΩ Max.              | Accelerated Velocity: $1960 \pm 98 \text{m/s}^2$<br>Wave form: Half sine wave<br>Duration: $7 \pm 2 \text{msec}$<br>Number of Drops: 2 drops each to normal<br>and reversed directions of X,Y and Z axis,<br>totally 12 drops |  |  |  |  |  |
| 3.5.6                   | Handling Ergonomics                                 | No abnormalities allowed in manual mating handling.                                               | Manually operated                                                                                                                                                                                                             |  |  |  |  |  |
| 3.5.7                   | Connector<br>Mating Force                           | 2Pos. 58.8N Max.                                                                                  | Operation Speed: 100mm/min<br>Measure the force required to mate<br>connectors.<br>TE Spec. 109-5206<br>Condition A                                                                                                           |  |  |  |  |  |
| 3.5.8                   | Connector<br>Locking Strength                       | 100N Min.                                                                                         | Measure connector locking strength.<br>Operation Speed: 100mm/min.                                                                                                                                                            |  |  |  |  |  |
| 3.5.9                   | Contact<br>Retention Force<br>(LID Retention force) | 100N Min.                                                                                         | Measure contact retention force<br>with lid.<br>Operation Speed: 100mm/min.<br>Fig.6                                                                                                                                          |  |  |  |  |  |
| 3.5.10                  | Crimp Tensile<br>Strength                           | 0.3mm <sup>2</sup> : 69N Min. *<br>0.5mm <sup>2</sup> : 88N Min.<br>*Included the insulation grip | Apply an axial pull-off load to<br>crimped wire of contact secured<br>on the tester.<br>Operation speed: 100mm/min<br>TE Spec. 109-5205<br>Condition B                                                                        |  |  |  |  |  |

Fig.2(To be continued)

| Para.  | Test Items          | Requirements                        | Procedures                                 |  |  |  |  |  |  |
|--------|---------------------|-------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| 3.5.11 | Durability Repeated | Termination Resistance:             | 100cycles                                  |  |  |  |  |  |  |
|        | Mate/Unmate         | 10mΩMax.(Final)                     | Manually operated                          |  |  |  |  |  |  |
|        |                     |                                     | TE Spec. 109-5213                          |  |  |  |  |  |  |
|        | 1                   | Environmental Requiremer            | nts                                        |  |  |  |  |  |  |
| 3.5.12 | Thermal Shock       | 10mΩMax.(Final)                     | Mated connector                            |  |  |  |  |  |  |
|        |                     |                                     | -40°C/30min., 105°C/30min.                 |  |  |  |  |  |  |
|        |                     |                                     | Making this a cycle, repeat 1000 cycles.   |  |  |  |  |  |  |
| 3.5.13 | Humidity, Steady    | Insulation resistance               | Mated connector                            |  |  |  |  |  |  |
|        | State               | 100M $\Omega$ Min.(Final)           | 90~95% R.H.80±5℃                           |  |  |  |  |  |  |
|        |                     | 10MO Max (Final)                    | 240hours                                   |  |  |  |  |  |  |
|        |                     | Current Leakage 1mA Max             | 250mA applied                              |  |  |  |  |  |  |
| 2514   | Industrial Cas(SO ) | Insulation resistance               |                                            |  |  |  |  |  |  |
| 5.5.14 |                     | 100MΩ Min.(Final)                   | SO, Gas: 25ppm, 95% P.H                    |  |  |  |  |  |  |
|        |                     | Termination resistance              | $25^{\circ}C$ 96 hours                     |  |  |  |  |  |  |
|        |                     | 10mΩ Max.(Final)                    |                                            |  |  |  |  |  |  |
| 3.5.15 | Temperature Life    | 10mΩMax.(Final)                     | Mated connector                            |  |  |  |  |  |  |
|        | (Heat Aging)        |                                     | 120°C, Duration:                           |  |  |  |  |  |  |
|        |                     |                                     | (1)300hours, (2)120hours                   |  |  |  |  |  |  |
| 3.5.16 | Resistance to Cold  | 10mΩMax.(Final)                     | Mated connector                            |  |  |  |  |  |  |
|        |                     |                                     | -40°C±3°C, 300 hours                       |  |  |  |  |  |  |
| 3.5.17 | Humidity-           | Insulation resistance               | Mated connector                            |  |  |  |  |  |  |
|        | Temperature         | 100M $\Omega$ Min.(Final)           | Condition : Fig.8                          |  |  |  |  |  |  |
|        | Cycling             | 10m () Max (Final)                  |                                            |  |  |  |  |  |  |
| 3518   | Dust Bombardment    | 10mOMax (Final)                     | Mated connector                            |  |  |  |  |  |  |
| 0.0.10 | Duor Bonnbaramont   |                                     | Subject JIS R5210 cement blow of           |  |  |  |  |  |  |
|        |                     |                                     | 14N (1.5kgf) per 10 seconds in             |  |  |  |  |  |  |
|        |                     |                                     | 15 minutes intervals for 8 cycles, with    |  |  |  |  |  |  |
|        |                     |                                     | Unmate/Re-mating per 2 cycles.             |  |  |  |  |  |  |
|        |                     |                                     | TE Spec. 109-5110                          |  |  |  |  |  |  |
| 3.5.19 | Compound            | 10mΩMax.(Final)                     | Temperature: 80°C                          |  |  |  |  |  |  |
|        | Environment         | No electrical discontinuity greater | Vibration frequency:                       |  |  |  |  |  |  |
|        | Resistance          | than 1 $\mu$ sec. shall occur       | 20°C→200→20Hz/3min.(Log)                   |  |  |  |  |  |  |
|        |                     |                                     | Accelerated Velocity: 44.1m/s <sup>2</sup> |  |  |  |  |  |  |
|        |                     |                                     | Vibration Direction: X,Y,Z                 |  |  |  |  |  |  |
|        |                     |                                     | Duration: 1000 hours                       |  |  |  |  |  |  |
|        |                     |                                     | Test Current: 10mA                         |  |  |  |  |  |  |
|        |                     |                                     | Mounting: Fig.9                            |  |  |  |  |  |  |

Fig.2 (End)

## 3.6 Product Qualification Test Sequence

| Para. Test Examination |                                                    | Test Group |     |                              |   |   |     |     |     |     |     |     |     |     |     |
|------------------------|----------------------------------------------------|------------|-----|------------------------------|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                        |                                                    | 1          | 2   | 3                            | 4 | 5 | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  |     |
|                        |                                                    |            |     | Test Sequence <sup>(1)</sup> |   |   |     |     |     |     |     |     |     |     |     |
| 3.5.1                  | 1 Examination of Product                           |            | 1,6 | 1                            | 1 | 1 | 1   | 1,4 | 1,4 | 1,4 | 1,4 | 1,4 | 1,4 | 1,5 | 1,5 |
| 3.5.2                  | 2 Termination Resistance<br>(Low Level)            |            | 3,7 |                              |   |   | 2,4 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 2,6 | 2,6 |
| 3.5.3                  | 3 Dielectric with standing Voltage                 |            |     |                              |   |   |     |     | 6   | 6   |     |     |     |     |     |
| 3.5.4                  | Insulation Resist                                  | ance       |     |                              |   |   |     |     | 7   | 7   |     |     | 6   |     |     |
| 3.5.5                  | 5 Physical Shock                                   |            | 5   |                              |   |   |     |     |     |     |     |     |     |     |     |
| 3.5.6                  | 6 Handling Ergonomics                              |            | 2   |                              |   |   |     |     |     |     |     |     |     |     |     |
| 3.5.7                  | 7 Connector Mating Force                           |            |     | 2                            |   |   |     |     |     |     |     |     |     |     |     |
| 3.5.8                  | .8 Connector Locking<br>Strength                   |            |     | 3                            |   |   |     |     |     |     |     |     | 7   |     |     |
| 3.5.9                  | 9 Contact Retention Force<br>(LID Retention Force) |            |     |                              | 2 |   |     |     |     |     |     |     |     |     |     |
| 3.5.10                 | Crimp Tensile Strength                             |            |     |                              |   | 2 |     |     |     |     |     |     |     |     |     |
| 3.5.11                 | Durability                                         |            |     |                              |   |   | 3   |     |     |     |     |     |     |     |     |
| 3.5.12                 | 2 Thermal Shock                                    |            |     |                              |   |   |     | 3   |     |     |     |     |     |     |     |
| 3.5.13                 | Humidity(Steady State)                             |            |     |                              |   |   |     |     | 3   |     |     |     |     |     |     |
| 3.5.14                 | Industrial SO <sub>2</sub> Gas                     |            |     |                              |   |   |     |     |     | 3   |     |     |     |     |     |
| 3.5.15                 | Temperature Life                                   | 1          | 4   |                              |   |   |     |     |     |     | 3   |     |     |     |     |
|                        | (Heat Aging)                                       | 2          |     |                              |   |   |     |     |     |     |     |     |     | 3   | 3   |
| 3.5.16                 | 6 Resistance to Cold                               |            |     |                              |   |   |     |     |     |     |     | 3   |     |     |     |
| 3.5.17                 | 7 Humidity-Temperature<br>Cycling                  |            |     |                              |   |   |     |     |     |     |     |     | 3   |     |     |
| 3.5.18                 | 8 Dust Bombardment                                 |            |     |                              |   |   |     |     |     |     |     |     |     | 4   |     |
| 3.5.19                 | 19 Compound Environment<br>Resistance              |            |     |                              |   |   |     |     |     |     |     |     |     |     | 4   |

(1) Numbers indicate sequence in which tests are performed.

Fig. 3





Fig.4



Fig.5















The applicable product descriptions and part numbers are as shown in Appendix. 1

| Product Part No.* | Description                          |  |  |  |
|-------------------|--------------------------------------|--|--|--|
| 353744            | Fix-in Squib Connector, Housing-Main |  |  |  |
| 353745            | Fix-in Squib Connector, Housing-Lid  |  |  |  |
| 353746            | Fix-in Squib Connector, Ferrite      |  |  |  |
| 353376            | Squib Contact (Ф1mm Socket)          |  |  |  |

\* Note : Part number is consisted from listed base number and 1 digit numeric prefix and suffix with dash. Refer to catalog or customer drawing for specific part numbers for each base number. When prefix is zero, zero and dash are omitted.

Appendix 1