Electronics

AMP

Rev.D3

FASTIN-FASTON(*) Connector 2.8 - 4.8 - 6.3 - 7.9 and 9.5 mm srs.

1. <u>SCOPE</u>

This specification covers the performance requirements and test methods of 2.8 - 4.8 - 6.3 - 7.9 and 9.5 mm srs. FASTIN-FASTON* Connectors.

Sizes are designed to correspond to the mating tab width of 2.8 - 4.8 - 6.3 - 7.9 and 9.5 mm. acc. to the IEC 760.

These terminals are suitable for Automotive, Consumer Goods, Computer, Telecommunications and Industrial Controllers Applications.

2. <u>REQUIREMENTS</u>

2.1 <u>Design and construction</u> (involved P/ns are listed on page 7 of 7) Connectors shall be of the design, construction and physical dimensions specified on the applicable product drawings, called Customer drawing (C-.... TE Amp Part Number)

2.2 Materials

Contact : Brass and/or Phosphor Bronze (Tin or silver plated) and/or Steel nickel plated (*).

Housing : According to Product drawings

(**•**), Steel Nickel plated version has not been fully tested to insure this specification requirements.

2.3 Current Carrying Capacity

4.8 mm.	(.110" Sr.) (.187" Sr.) . (.250" and .312" Sr.)	:	 11A max with 1.0 or 1.5 mm² wire size 20A max with 2.5 mm² wire size 28A max with 4 or 6 mm² wire size For steel nickel plated version use: 7A with 0.75-0.80 mm² wire, 8A with 1.0 mm² wire,
9.5 mm.	(.375" Sr.)	:	10A. with 1.5 mm ² wire, 14A with 2.5 mm ² wire. 50A max with 10 mm ² wire size

2.4 Temperature rating

Temperature rating shall be within the range specified as following:

by you to other than AMP personnel without written authorization from AMP Italia.

-30°C/+105°C for Brass versions

-40°C/+125°C for Phos. Bronze versions

-30°C/+240°C for Steel Nickel plated versions.

This range includes ambient temperature and temperature rising as a result of loaded current affection.

2.5 Application of the FASTIN-FASTON terminal

Crimp heights must be in accordance with the dimensions specified on plate of the relevant miniapplicator, supplied by TE Amp Italia for the terminal in subject.

2.6 Maximum operating voltage

250V AC/DC.

This specification is a controlled document.		This information is confidential and is disclosed to you on condition that no further disclosure is made			Page 1 of 7
DR. R. FABRIS		DATE	APVD C. TARTARI		DATE
rev letter		rev. record	DR	CHK	Date
B4	REVISED ADDING .110"	sr P/Ns & REDRAWN, ET00-0088-01	R.F.	C.T.	09 APR 2001
С	REVISE	D FOR ET00-0225-01	H.Y.	C.T.	14 FEB 2002
C1	NEW P/N.s A	DDED FOR ET00-0082-02	H.Y.	C.T.	23 APR 2002
D	CHANGED PA	RAMETERS, ET00-0034-03	H.Y.	C.T.	06 MAR 2003
D1	ADDED NEW F	PART 160173, ET00-0049-03	H.Y.	C.T.	24 APR 2003
D2	ADDED	NEW PART 293041	H.Y.	G.T.	02 AUG 2005
D3		UPDATED	H.Y.	G.T.	02 APR 2009

(*) Trademark of TE AMP Incorporated

3. TEST REQUIREMENTS AND PROCEDURE SUMMARY

ТЕ	ST DESCRIPTION	PROCEDURE	REQUIREMENT			
	PRO	DUCT EXAMIN	ΑΤΙΟΝ			
3.1	Visual examination	Product shall be in accordance with the requirements of production drawing.	Visual, dimensional and functional check.			
	MEC	HANICAL REQUIR	EMENTS			
3.2	Connector mating	Female connector mated with	1° Cycle			
	force	proper tab connector (locking device not operating). Perform test at a rate of 25-50	44N Max per pole for 2.8, 4.8 mm srs.			
		mm/minute	25N Max per pole for 6.3 mm srs.			
			35N Max per pole for 7.9, 9.5 mm srs.			
			40N Max per pole for 6.3 mm srs. when receptacle with dimple and tab with hole have been used.			
3.3	Connector unmating		1° Cycle 10° cycle			
	force		Not greater than connector mating force value.4N Min.per pole for Brass and Phos. BronzeThis is not applicable to receptacle contact with dimple and tab with hole.4N Min.per pole for Brass and Phos. BronzeMin. per pole for Steel nickel plated versions.			
3.4	Engaging force		40N Max Per pole for 2.8. 4.8 mm srs.			
			22N Max For 6.3 mm srs.			
			32N Max For 7.9, 9.5 mm srs.			
	Single receptacle contact mated with tab contact		For 6.3 mm srs. when 38N Max receptacle with dimple and tab with hole have been used.			
3.5	Separating force		1° Cycle 10° cycle Not greater than 4N Min.for			
			engaging value.force Phos. BranzeThis is not applicable to receptacle contact with dimple and tab with hole.Brass and Phos. Bronze versions, 13NMin. for Steel nickel plated versions.			
3.6 Durability 10 mating/unmating operations						

TEST DESCRIPTION		PROCI	PROCEDURE			EMENT	
3.7	Contact retention	Apply an axial lo	40N Min for 2.8, 4.8 mm srs.				
	force	a rate of 25 mm	/ minute	60N Min for 6.3, 7.9, 9.5 mm srs.			
3.8	Crimp tensile strength	direct pull at a	ed terminal to a rate of 25-50	Wire Size (mm²)		N Min	
	(see note 3)	to avoid the	tion must be cut plastic material the wire crimp	$\begin{array}{c cccccc} 0.25 & 40 \\ 0.35 & 60 \\ 0.5 & 70 \\ 0.75 \\ 0.$			
			REQUIR	10.0		600	
3.9	Millivolt drop,	As per Fig.1 and			13		
3.9	specified current	Wire Size	3 mV / A Max, (6mV/A Max. for steel version).				
	(see note 3)	(mm ²) 0.25 0.35 0.5 0.75-0.8 1.0 1.5 2.5 4.0 6.0 10.0	(A) 2 3 5 8 10 14 20 28 36 50	(Before and after ten in/out operations			
3.10	Insulation resistance	Test between a of connector ass 500 Vd.c., hold	djacent contacts semblies. 1 min.		rsions an	Brass and Phos. d 100 M Ω Min. for versions.	
3.11	Dielectric withstanding voltage	Test between a of connector as	and Phos.	Bronze v 1 minut	1 minute for Brass ersions and 1750 V e for steel nickel		
3.12	Current overload	 a) For 1 hour of 1.5 ti specified at 2.3 for Stee way only b) For 1 hour a the current s 3.9 to all t connector 	Millivolt dro	op 6 mV/A	A Max eel version)		

Electronics

AMP

TEST DESCRIPTION		PROCEDURE	REQUIREMENT
3.13	Thermal cycling	 Subject mated connectors to 5 cycles. Each cycle consists of : 2 hrs at max. temperature specified in para. 2.4. 2 hrs : +40°C ±2°C at 95% RH 2 hrs : -30°C ±2°C 	Millivolt drop 6 mV / A Max . (8 mV/A Max for Steel version). Shall meet the requirements of subsequent tests listed in para 5.
3.14	Current overloading, cyclic. (For steel nickel plated versions, .250" sr. only).	Test current 1.5 times the current specified at point 2.3. Duration: 250 cycles composed of: 45 min. current ON 15 min. current OFF	Voltage drop 8mVA max.
3.15	Accelerated ageing	Subject mated connectors to 200 hrs at max. temperature environment specified in para. 2.4.	Millivolt drop 6 mV / A Max., (8mV/A Max. for steel version). Shall meet the requirements of subsequent tests listed in para 5.
	ENVIR	ONMENTAL REQU	IREMENTS
3.16	Corrosion, salt spray (see note 3)	Subject mated connectors to 96 hrs at 5% concentration (Temperature : 35°C±2°C ; PH : 6.5 ÷ 7.2)	Millivolt drop 6 mV/A Max., (8mV/A Max. for steel version). Shall meet the requirements of subsequent tests listed in para 5.
3.17	Vibration	Subject mated connectors to 10-200-10 Hz traversed in 5 minutes at 1.5 mm total excursion 2 hrs in each of 3 mutually perpendicular	Millivolt drop 6 mV / A Max., (8 mV/A Max. for steel version). Shall meet the requirements of subsequent tests listed in para 5.

Notes :

- 1) Unless otherwise specified, all measurements and tests shall be made using tin plated receptacle contacts and plain tab contacts at room temperature of $23^{\circ}C \pm 5^{\circ}C$.
- 2) Corrosion resistance is not applicable to plain contacts.

directions.

(10 g acceleration).

3) For P/Ns 280075-... and 280756-... only : crimpable onto wire size 3 mm² too crimp tensile strength:

260N min., test current for millivolt drop : 24A

4. QUALIFICATION

When all the tests have been successfully performed on the subject product line, the product is qualified according to the present specification.

Electronics

AMP

5. TEST SEQUENCE

	TEST GROUP AND SEQUENCE (a)									
DESCRIPTION	A1	A2	В	с	D	E	F	G (b)	H©	I©
Appearance	1.5	1.7	1.7	1.13	1.7	1.7	1.5	1	1-7	1-11
Mating force (Connector)				2.11				2		2-6
Unmating force (Connector)				3.12				3		3-7
Engaging force (Single contact)		2.5						4		
Separating force (Single contact)		3.6						5		
Contact retention force								6		
Crimp tensile								7		
Millivolt drop	2.4		2.6	4.8	2.5	2.5	2.4		2-6	4-9
Insulation resistance			3	5.9		3.6			3	10
Dielectric withstanding voltage			4	6.10	3.6				4	
Current overload			5							
Thermal cycling				7						
Accelerated ageing					4					
Corrosion, salt spray						4				8
Vibration							3			
Durability	3	4								5
Temperature rise with current overload, cycling									5	

(a) Numbers indicate sequence in which tests are performed

(b) Tests to be performed on separate samples

(c) For Steel Nickel plated version only.

AMP

FEMALE CONNECTOR AND FIXED TAB

Figure 2

NOTE A) A male test tab having either a hole or dimple detent can be used (hole versions are preferred).

INVOLVED P/Ns (Base No. without prefix and suffix)

TERMINALS									
2.8 r	nm.	4.8 mm.	6.3 r	nm.	7.9 mm.	nm.			
(.110	" Sr.)	(.187" Sr.)	(.250" Sr.)		(.312" Sr.)	(.375	" Sr.)		
RECEPTACLE	TAB	RECEPTACLE	RECEPTACLE	TAB	RECEPTACLE	RECEPTACLE	TAB		
160366	160743	280313	42100	42098	160251	280076	280074		
160950	160762	280919	180351	180352	160428	280755	280075		
160729	160776	281197	180372	280080	160557	280756			
160864	160887	282180	180398 (*)	280081	160863	281091			
160684	160926	282331	180560	280096	160920				
160173	188352		280084	280425	180373 (*)				
	160888		280085	282170	180374 (*)				
	160923		280095	282186	180453				
			280098	160457	280315				
			280285	160691					
			280357 (*)	293041					
			280428						
			280923						
			282171						
			282176						
			282177						
			282178						
			180375						
			284340						
			284697(*)						

	HOUSINGS									
2.9 mm. 4.8 mm.		6.3 n	nm.	7.9 mm.	9.5 n	nm.				
Sr.)	(.187" Sr.)	(.250" Sr.) (.312" Sr.) (.37		(.375	" Sr.)					
TAB	RECEPTACLE	RECEPTACLE	TAB	RECEPTACLE	RECEPTACLE	TAB				
	281169	163007			280073	280072				
	281750			280030		280924				
				280035	281993	281992				
				280039						
			200290							
	Sr.)	Sr.) (.187" Sr.) TAB RECEPTACLE 281169	Sr.) (.187" Sr.) (.250" TAB RECEPTACLE RECEPTACLE 281169 163007	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

(*) Flag version