DESIGN OBJECTIVES 108-101528

The product described in this document has not been fully tested to ensure conformance to the requirements outlined herein. TE Connectivity makes no representation or warranty, express or implied, that the product will comply with these requirements, Further, TE Connectivity reserves the right these requirements based on the results of additional testing and evaluation. Contact TE Connectivity Engineering for further information. If necessary, This document will become the Product Specification at successful completion of testing.

1. Scope:

1.1 Content

This specification covers the requirements for product performance, test methods and quality requirements for TE Connectivity pin header for PCB connections. The header is soldered onto the PCB.

Pin header assy: P/N:*-2311622-*, *-2311621-*,*-2320179-*,*-2320178-*,*-2311610-*,*-2322613-* Suitable mating connector: 2301695-*, 2322346-*,2322637-*

P/N	Pin Position	Туре	Applicable Plug	Terminal P/N
-2311621-	8	90°	2322346-*	
-2320179-	8	180°	2322346-*	
-2322610-	12	90°	2322637-*	
-2322613-	12	180°	2322637-*	928999-*
-2311622-	16	90°	2301695-*	/963/15-*
-2320178-	16	180°	2301695-*	/1355/17-
-2329531-	20	90°	2329592-*	
-2330352-	20	180°	2329592-*	

		DR K.WEI 18JAN2017 CHK W.WU 01DEC2017	7		TE Con Shangha	nectivity ii, China				
				APP		NO.	REV	LOC		
A3	Add Explanation for 3.5.4	K.W	04JAN 2019	I.YIN		108-101528	A3	ES		
A2	Change Drop Test Information	K.W	11MAY2018	05DEC2017						
A1	Add Prefix of P/N Add New P/N	K.W	08APR2018	PAGE	TITLE	TecMOS Series	Header			
A	Release	K.W	18JAN2017	1 of 11		Teenings Series Heuder				
LTR	REVISION RECORD	DR	DATE							

- 1.2 Qualification
- A. When tests are performed on the subject product line, the procedures specified in USCAR-2 Revision 6 specifications shall be used. All inspections shall be performed using the applicable Inspection Plan and Product Drawing.

2. Applicable Documents:

The following documents form a part of this Specification to the extent specified herein. In the event of conflict between the requirements of this Specification and the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

2.1 Spec

- A. USCAR-2 Revision 6
- B. GMW3191

3. Requirements:

3.1 Design and Construction

Product shall be of the design, construction and physical dimensions specified in the Applicable product drawing.

3.2 Materials

- A. Contact

 Material: 0.63 SQ Pin CuZn30

 Finish: Tin over Nickel
 B. Housing

 Material: PA10T or SPS

 C. Plug housing

 Material: PBT-GF10
- 3.3 Ratings:

Operating temperature Range : -40 $^\circ C$ to + 105 $^\circ C$

3.4 Performance and Test Descriptions

The product is designed to meet the electrical, mechanical and environmental performance requirements specified in fig.1 All tests are performed at test condition of the USCAR-2 Revision 6 specifications unless otherwise specified.

3.5 Requirements and Procedures Summary

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	2 of 11	108-101528	A3	ES

Para.	Test items	Requireme	ents	Procedures				
		MECI	HANICAL TE	ST				
3.5.1	Visual Examination	The specimen under show any evidence of deterioration, cracks etc. that could affect	test must not of , deformities, function.	USCAR-2 Revision 6 Section 5.1.8 Visually, Dimensionally and Functionally inspected per applicable inspection plan.				
3.5.2	Terminal insertion force	Insertion force<=301	N	USCAR-2 Revision 6 Section 5.4.1 Insert the terminal straight into the connector at a uniform rate not to exceed 50mm per minute. Upon reaching the forward stop, continue applying force until failure point of the forward stop is reached.				
3.5.3	Terminal retention force	1st lock>=30N 1 st lock+2 nd lock>=6 Moisture Conditionin 1 st lock+2 nd lock>=5 Temp/Humidity and	0N(after ng) 0N(after HTE)	USCAR-2 Revision 6 Section 5.4.1 Pull the terminal straight back from connector. Increase the pullout force at a uniform rate not to exceed 50mm/min, until pullout occurs.				
3.5.4	2 nd lock open and close force	Pre-set to lock 60N I length <15mm) Pre-set to lock 60N I length >=15mm) Lock to pre-set 10~6 length <15mm) Lock to pre-set 10~7 length >=15mm)	Max. (hinge Max. (hinge ON (hinge 75N (hinge	USCAR-2 Revision 6 Section 5.4.5 Engage each component to be tested, with its retaining mechanism in place, at a rate not exceed 50mm/min With the component fully installed and properly fixtured, disengage the component at a rate not exceed 50mm/min.				
3.5.5	Connector-to- Connector mating Force	Mating force <=75N (For 2329531-* and Mating force <=90N	2330352-*)	USCAR-2 Revision 6 Section 5.4.2 Connectors to be mated together by applying a measured force at speed 50 mm/min to slide fully seated and locked at the first time.				
3.5.6Connector-to- Connector Unmating Force with Lock DisengagedUnmating force <=75N (For 2329531-* and 23303) Unmating force <=90N)			5N 2330352-* 0N)	USCAR-2 Revision 6 Section 5.4.2 Connectors with primary lock to be unmated by applying a measured force at speed 50 mm/min to slide out at the first time.				
3.5.7	Connector-to- Connector Unmating Force with Lock Engaged	Unmating force >=1	10N	USCAR-2 Revision 6 Section 5.4.2 Connectors with primary lock fully engaged by applying a measured force at speed 50 mm/min to slide out at the first time.				
-	TE Sha	Connectivity anghai, China	PAGE 3 of 11	NO. 108-1015	528	REV A3	LOC ES	

3.5.8	Polarization Feature Effectiveness	The connection system must withstand a specified mis-mating force without damage to the connector and no electrical contact shall be made between the male/female terminals.	USCAR-2 Revision 6 Section 5.4.4 Attempt to engage the connector halves at a rate not to exceed 50mm/min. until a force of 3X the maximum value of a properly mated connector is applied. Hold force for 3 seconds.
3.5.9	Pin Push-Out Force	The minimum force required is 15N.	USCAR-2 Revision 6 Section 5.7.1 Moisture condition samples at 95-98% relative humidity at 40C° for 6hours Apply an axial load to the front and back of the Contact Operation speed: 50mm/min
3.5.10	Connector Cycling	Re-mate connectors in preparation for future test sequences or follow directions in the respective procedure to follow	USCAR-2 Revision 6 Section 5.1.7 Completely mate and un-mate each connector pair 10 times
3.5.11	Connector Integration drop test	Prepare three assemblies, and every assembly is assembled by four commodity headers, drop every assemblies at a time once onto a horizontal concrete surface from a height of at least 1 meter. Only judge the "Lego" strucutre	USCAR-2 Revision 6 Section 5.4.8 Fall surface: concrete Drop height: 1.0 m
3.5.12	Lego structure bending resistan ce	The bending force to destroy "Lego" is Min50N	Two single headers integration(A+B), fix A, Measure the force required to destroy the "Lego" (the point of application of force on the centre of B) Then fix B, measure A (Integration B+A) (5 integrations for A+B, 5 integrations for B+A)Measure sketch map shown as Fig 3
3.5.13	Lego structure mating force	The mating force of lego is max 75N	Fix A single header, measure the force to mating B lego in A until the lock engage Then fix B measure A The measure sketch map shown as Fig 4
		ELECTRICAL TE	ST
3.5.14	Dry Circuit Resistance	Dry Circuit Resistance <=20mΩ	USCAR-2 Revision 6 Section 5.3.1 Measure and record the resistance across 150mm of conductor to be use for this test.
3.5.15	Voltage Drop	Voltage Drop <=50mV	USCAR-2 Revision 6 Section 5.3.2 Measure and record the millivolt drop across 150mm of the conductor size and insulation type to be used during the test.
3.5.16	Insulation Resistance	Insulation resistance>=100MΩ	USCAR-2 Revision 6 Section 5.5.1 Test condition: U=500V (DC)

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	4 of 11	108-101528	A3	ES

3.5.17	Dielectric strength	No creeping discharge or flashover shall occur	GMW3191 Section 4.3.6 1000V at 50Hz or 60 Hz or 1600V DC for at least 1min			
3.5.18Current Current Capability TestCurrent 5A, Increase temperature 55°C max wire range 0.75mm2 and measure 4 pins(the positions of pins see the Fig.5, Measured by applying all 4 signal pins with series circuit, Derating Curve of 12way header is shown as Fig.9)ENVIRONMENT TI		Current 5A, Increase temperature 55°C max wire range 0.75mm2 and measure 4 pins(the positions of pins see the Fig.5, Measured by applying all 4 signal pins with series circuit, Derating Curve of 12way header is shown as Fig.9)	 1) Measure and record the voltage drop, using the expected Maximum Current Capability of TUT. 2) Test the sample terminal pairs at 23 °C ±5 °C. Slowly increase the power supply output until it is providing no greater than 50% of the expected Maximum Current Capability of the TUT. 3) Wait at least 15 minutes, record the ambient temperature, the temperature of each terminal pair interface, the millivolt drop across each terminal pair. 4) Increase the current by no more than 10% of the expected Maximum Current Capability and repeat 3). 			
		ENVIRONMENT T	EST			
3.5.19	Vibration/Mech anical Shock	There must be no instance in which the resistance of any terminal air exceeds 7.0 Ω for more than 1 microsecond for circuit continuity monitoring. 3.5.14 Dry Circuit Resistance 3.5.15 Voltage Drop	USCAR-2 Revision 6 Section 5.4.6 Vibration class V1(see the Fig.6)			
3.5.20	Temperature/Hu midity Cycling	3.5.14 Dry Circuit Resistance 3.5.15 Voltage Drop 3.5.16 Insulation resistance	USCAR-2 Revision 6 Section 5.6.2 Temperature: -40°C~105°C Cycles: 40 cycles(see the Fig.7)			
3.5.21	High Temperature Exposure	3.5.14 Dry Circuit Resistance 3.5.15 Voltage Drop	USCAR-2 Revision 6 Section 5.6.3 Place the samples in the chamber, set to 105 °C, and leave the samples in the chamber for 1008 hours.			
3.5.22	Thermal Shock	There must be no instance in which the resistance of any terminal air exceeds 7.0 Ω for more than 1 microsecond for circuit continuity monitoring. 3.5.14 Dry Circuit Resistance 3.5.15Voltage Drop	USCAR-2 Revision 6 Section 5.6.1 -40°C/30min, +105°C/30min. Make this one cycle. Repeat 100 cycles.			
3.5.23	Reflow soldering pretreatment	After reflow soldering, the plastic housing should not blister, melt or occur any discoloration. Meet all test items follow sequences	Reflow soldering simulation (the reflow temperature curve shown as Fig.8 max temperature:260°C)			

3.6 **Product Qualification Test and Sequence**

Т	st or Examination Test Group										
16	est or Examination	1	2	3	4	5	6	7	8	9	10
3.5.1	Visual Examination	1,3,6	1,3,6	1,3,6	1,3,5	1,3,5	1,3,9	1,3,9	1,3,11	1,3,9	1,3,5
3.5.2	Terminal insertion force										
3.5.3	Terminal retention force										
251	2 nd lock open and close										
5.5.4	force										
355	Connector-to-Connector		4	4							
5.5.5	mating Force										
	Connector-to-Connector		5								
3.5.6	Unmating Force with										
	Lock Disengaged										
	Connector-to-Connector			5							
3.5.7	Unmating Force with										
	Lock Engaged										
3.5.8	Polarization Feature				4						
5.5.0	Effectiveness										
3.5.9	Pin Push-Out Force					4					
3.5.10	Connector Cycling	4					4	4	4	4	
3.5.11	Connector integration drop test										4
2512	Lego structure										
3.3.12	bending resistance										
2 5 1 2	Lego structure mating										
5.5.15	force										
3.5.14	Dry Circuit Resistance						5,7	5,7	5,7	5,7	
3.5.15	Voltage Drop						8	8	8	8	
3.5.16	Insulation Resistance								9		
3.5.17	Dielectric strength								10		
3.5.18	Current Capability test	5									
2 5 10	Vibration/Mechanical						6				
5.5.19	Shock										
2 5 20	Temperature/Humidity								6		
5.5.20	Cycling										
2 5 21	High Temperature									6	
5.5.21	Exposure										
3.5.22	Thermal Shock							6			
3 5 22	Reflow soldering	2	2	2	2	2	2	2	2	2	2
5.5.25	pretreatment										
	Sample Size	5	5	5	5	4	8	8	8	8	9

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	6 of 11	108-101528	A3	ES

Test or Examination Test Group				 						
Tes	t or Examination	11	12	13						
3.5.1	Visual Examination	1,4	1,3	1						
3.5.2	Terminal insertion force	2								
3.5.3	Terminal retention force	3								
3.5.4	2 nd lock open and close force		2							
3.5.5	Connector- Connector mating Force									
3.5.6	Connector-to- Connector Unmating Force with Lock Disengaged									
3.5.7	Connector-to- Connector Unmating Force with Lock Engaged									
3.5.8	Polarization Feature Effectiveness									
3.5.9	Pin Push-Out Force					 				
3.5.10	Connector Cycling					 				
3.5.11	Connector integration drop test									
3.5.12	Lego structure bending resistance			3						
3.5.13	Lego structure mating force			2						
3.5.14	Dry Circuit Resistance									
3.5.15	Voltage Drop									
3.5.16	Insulation Resistance									
3.5.17	Dielectric strength									
3.5.18	Current Capability test									
3.5.19	Vibration/Mechanical Shock									
3.5.20	Temperature/Humidity Cycling									
3.5.21	High Temperature Exposure									
3.5.22	Thermal Shock									
3.5.23	Reflow soldering pretreatment									
	Sample Size	10	10	5						

Fig. 2

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	7 of 11	108-101528	A3	ES

4. QUALIFICATION TEST

4.1 Sample selection

Samples shall be prepared in accordance with applicable specification.

4.2 Test sequence

Qualification test shall be conducted as sequence specified in Fig. 2

4.3 Requalification test

If changes significantly affecting form, fit or function are made to product or manufacturing process, product assurance shall co-ordinate requalification testing, consisting of all or part of original testing sequence as determined by developments, product, quality and reliability engineering.

4.4 Acceptance

Acceptance is based on verification that product meets requirements of Fig 1. Failures attributed to equipment, test setup or operator deficiencies shall not disqualify product. When product failure occurs, Corrective action shall be taken and sample resubmitted for qualification. Testing to confirm corrective action is required before resubmitted.

4.5 Quality conformance inspection

Applicable TE quality inspection plan will specify sampling acceptable quality level to be used. Dimensional and functional requirements shall be accordance with applicable product drawings and this specification.

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	8 of 11	108-101528	A3	ES

5. APPENDIX

5.1 Lego bending resistance measure sketch map

Fig 3. Lego bending resistance measure sketch map

Fig 4. Lego mating sketch map

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	9 of 11	108-101528	A3	ES

5.3 The positions of pins for Current Capability Test

Fig 5. The positions of pins for current capability test

5.4 Vibration class graphs

Fig 6. The vibration class V1 graphs

5.5 Temperature/humidity cycling schedule

Fig 7. Temperature/humidity cycling schedule

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	10 of 11	108-101528	A3	ES

Fig 8. Reflow Temperature curve

Fig 9. 12 Way Header Derating Curve

	PAGE	NO.	REV	LOC
TE Connectivity Shanghai, China	11 of 11	108-101528	A3	ES