

The PT9CN communicates linear position feedback via the CANbus SAE J1939 interface. The PT9CN has been designed for factory and harsh environment applications requiring full stroke ranges up to 550".

As a member of Celesco's innovative family of NEMA 4 rated cable-extension transducers, the PT9CN installs in minutes by simply mounting its body to a fixed surface and attaching its cable to the movable object. Perfect parallel alignment not required.

Output Signal

PT9CN

Cable Actuated Sensor Heavy Industrial • J1939 CANbus

Linear Position/Velocity to 550 inches (1400 cm) **Aluminum or Stainless Steel Enclosure Options IP67 • NEMA 6 Protection**

General

Full Stroke Range 0-75 to 0-550 inches **Electrical Interface** CANbus SAE J1939

Protocol Proprietary B Accuracy ± 0.10% full stroke Repeatability ± 0.02% full stroke Resolution ± 0.003% full stroke

Measuring Cable Options nylon-coated stainless steel or thermoplastic **Enclosure Material** powder-painted aluminum or stainless steel Sensor plastic-hybrid precision potentiometer

Potentiometer Cycle Life ≥ 250,000 cycles

Maximum Retraction see ordering information

Acceleration

Maximum Velocity see ordering information Weight, Aluminum (Stainless

Steel) Enclosure

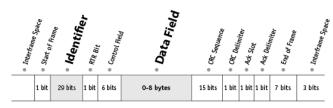
8 lbs. (16 lbs.), max.

Electrical

Input Voltage 7 - 18 VDC **Input Current** 60 mA max.

Address Setting (Node ID) 0...63 set via DIP switches

Baud Rate 125K, 250K or 500K set via DIP switches **Update Rate** 10 ms. (20 ms. available, contact factory)


Environmental

Enclosure NEMA 4/4X/6, IP 67

Operating Temperature -40° to 200°F (-40° to 90°C) Vibration up to 10 g to 2000 Hz maximum

SENSOR SOLUTIONS /// PT9CN 12//2015 Page 1

I/O Format and Settings

repetition = 8 msec.

Identifier

Message Priority Future Use			J1939 Reference Proprietary B				Data Field Type*					Not Used Node ID**																	
Example –	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1	1	1
Identifier Bit No. –	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value –			()			ı	=			ı	=				5			:	3			3	3			F	:	

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

Data Field

 $\mathbf{B_0} = \mathsf{LSB}$ current % of measurement range byte

B1 = MSB current % of measurement range byte

B₂ = LSB current measurement count byte

B₃ = MSB current measurement count byte

, = error flag ; = error flag	Velocit	ty Data	Error	Flags	Measu	rement unt	Measur		
; = LSB velocity data byte = MSB velocity data byte	B ₇	B ₆	B ₅	B ₄	В3	B ₂	B ₁	Bo	

Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 16-bit value that occupies bytes $\mathbf{B_2}$ and $\mathbf{B_3}$ of the data field. $\mathbf{B_2}$ is the LSB (least significant byte) and $\mathbf{B_3}$ is the MSB (most significant byte).

The CMC starts at 0x0000 with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at 0xFFFF. This holds true for all ranges.

Converting CMC to Linear Measurement

To convert the current measurment count to inches or millimeters, simply divide the count by 65,535 (total counts over the range) and then multiply that value by the full stroke range:

$$\left(\frac{\frac{\text{current measurement}}{\text{count}}}{65.535}\right) \chi \frac{\text{full stroke}}{\text{range}}$$

Sample Conversion:

If the full stroke range is **30 inches** and the current position is **0x0FF2** (4082 Decimal) then,

$$\left(\frac{4082}{65,535}\right)$$
 X 30.00 inches = 1.87 inches

If the full stroke range is 625 mm and the current position is 0x0FF2 (4082 Decimal) then,

$$\left(\frac{4082}{65,535}\right)$$
 X 625 mm = 39 mm

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Current % of Measurement Range

The Current % of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is .1 % of the full stroke measurement range.

This value starts at 0x0000 at the beginning of the stroke and ends at 0x03E8.

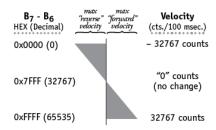
Example:

B₅

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
•••		
03E8	1000	100.0%

Error Flags

0x55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer.


OxAA (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer.

If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration.

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Velocity

Data in bytes ${\bf B_7}$ - ${\bf B_6}$ is the change in the CMC (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity in a post processing operation.

Velocity Calculation

$$\left(\frac{\text{count change} - 32767}{\text{.1 sec. time period}}\right) X \left(\frac{\text{full stroke range}}{65,535}\right)$$

Sample Calculations

Cable Extension (positive direction):

 $B_7 - B_6 = 0 \times 8006$ (32966 Dec), full stroke = 200 in.

$$\left(\frac{32966 - 32767}{.1 \text{ sec}}\right) X \left(\frac{200 \text{ in.}}{65,535}\right) = 6.07 \text{ in. / sec.}$$

Cable Retraction (negative direction):

 $B_7 - B_6 = 0x7F1A$ (32538 Dec), full stroke = 200 in.

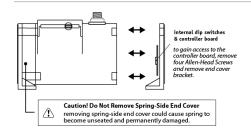
$$\left(\frac{32538 - 32767}{.1 \text{ sec}}\right) \chi \left(\frac{200 \text{ in.}}{65,535}\right) = -6.99 \text{ in./ sec}$$

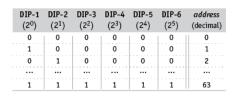
Setting the Address (Node ID) and Baud Rate

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number 1 (= 20) and ending with switch number 6 (= 2^5).


Baud Rate


The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches 7 & 8 on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

CANBus Controller Board

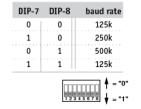
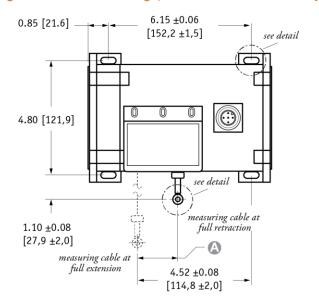
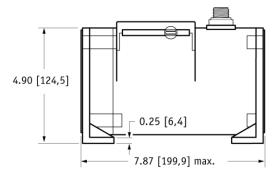
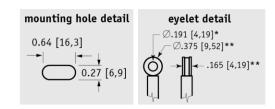
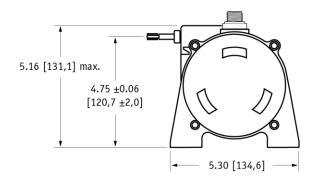
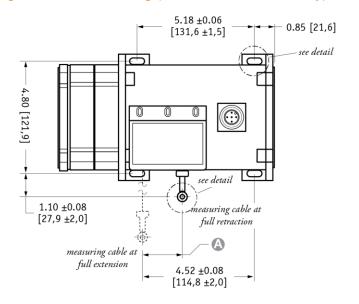
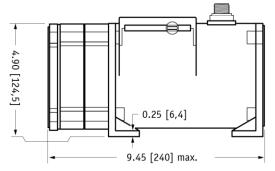





Fig. 1 – Outline Drawing (18 oz. cable tension only)



DIMENSIONS ARE IN INCHES [MM] tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.


A DIMENSION (INCHES)


	MEASURING CABLE									
RANGE	Ø.031 in.	\emptyset .034 in.	Ø.047 in.	Ø.062 in.						
75	n/a	0.22	0.29	0.37						
100	n/a	0.29	0.39	0.49						
150	n/a	0.44	0.59	0.73						
200	n/a	0.58	0.79	0.98						
250	n/a	0.73	0.98	1.22						
300	n/a	0.88	1.18	1.47						
350	n/a	1.02	1.38	1.71						
400	n/a	1.17	1.57	1.96						
450	n/a	1.31	1.77	n/a						
500	n/a	1.46	1.97	n/a						
550	1.61	1.61	n/a	n/a						

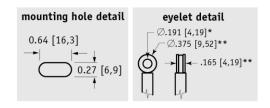
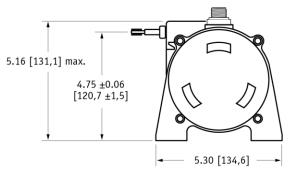
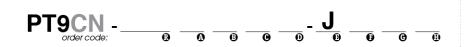

- * tolerance = +.005 -.001 [+.13 -.03] ** tolerance = +.005 -.005 [+.13 -.13]

Fig. 2 – Outline Drawing (36 oz. cable tension only)


DIMENSIONS ARE IN INCHES [MM] tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

DIMENSION (INCHES)

MEASURI	NG	C A	BL	Ε
Ø.034 in.	\emptyset .0	47	in.	Ø
0.00				


RANGE	Ø .031 in.	\emptyset .034 in.	\emptyset .047 in.	Ø.062 in.
75	n/a	0.22	0.29	0.37
100	n/a	0.29	0.39	0.49
150	n/a	0.44	0.59	0.73
200	n/a	0.58	0.79	0.98
250	n/a	0.73	0.98	1.22
300	n/a	0.88	1.18	1.47
350	n/a	1.02	1.38	1.71
400	n/a	1.17	1.57	1.96
450	n/a	1.31	1.77	n/a
500	n/a	1.46	1.97	n/a
550	1.61	1.61	n/a	n/a

* tolerance = +.005 -.001 [+.13 -.03] ** tolerance = +.005 -.005 [+.13 -.13]

Ordering Information

Model Number:

Sample Model Number:

PT9CN - 200ALN3426FR - J50032SC5

84869336	range: enclosure measuring cable: measuring cable tension: cable exit: interface: baud rate: node ID:	AL N34 26 FR J 500 32	(200 inches) (aluminum) (.034 nylon-coated stainless) (26 oz.) (front) (CAMbus SAE J1939) (500k bits/sec.) (32 decimal)
ŏ	electrical connection:		(5-meter cordset with straight plug)

Full Stroke Range:

norder code:	7 5	100	150	200	250	300	350	400	450*	500*	550*
full stroke range, min:	75 in.	100 in.	150 in.	200 in.	250 in.	300 in.	350 in.	400 in.	450 in.	500 in.	550 in.

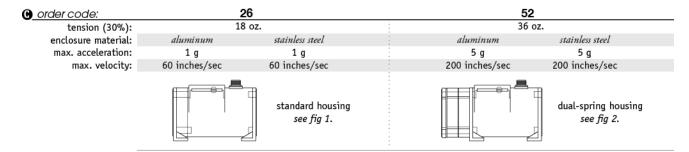
* – 36 oz. cable tension strongly recommended

Enclosure Material:

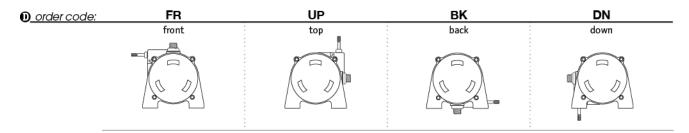
order code:

AL

powder-painted aluminum


SS

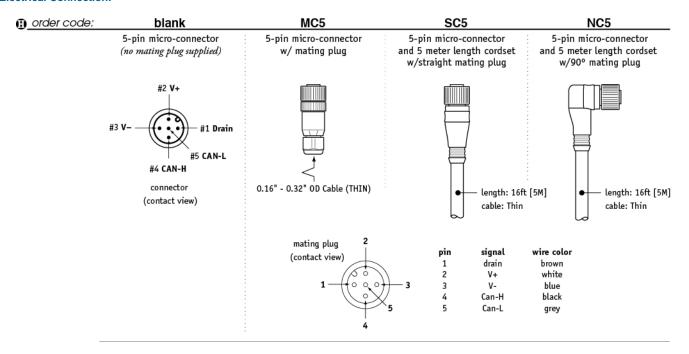
303 stainless


Measuring Cable:

Order code:	N34	S47	S 31	V62		
cable construction: \emptyset .034-inch nylon-coated stainless steel rope		Ø.047-inch bare stainless steel rope	\emptyset .031-inch bare stainless steel rope	Ø.058-inch PVC jacketed vectra fiber rope		
available ranges:	all ranges	all ranges up to 500 inches	550 inch range only	all ranges up to 400 inches		
general use:	indoor	outdoor, debris, high temperature	outdoor, debris, high temperature	high voltage or magnetic field		

Measuring Cable Tension:

Cable Exit:



Baud Rate:

🕒 order code:		125		250		500			
	12	25 kbaud		250 kba	nud		500 kbaud		
Node ID:									
• order code:	0	1	2	3		61	62	63	

select address (0 - 63 Decimal)

Electrical Connection:

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity company 20630 Plummer Street Chatsworth, CA 91311 Tel +1 800 423 5483 Tel +1 818 701 2750 Fax +1 818 701 2799

TE.com/sensorsolutions

info@celesco.com

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

PT9CN 12/01/2015