

RoHS

HTG3500 SERIES

Relative Humidity and Temperature Module

SPECIFICATIONS

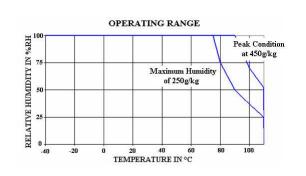
- Suitable for small bulk assembly
- Product free from Lead, Cr (6+), Cd and Hg. Compliant with RoHS
- Full interchangeability. Better than +/-3%RH and +/-0.25°C
- Humidity calibrated within +/- 3% RH @ 55% RH
- Temperature measurement through NTC direct output

Based on the rugged MEAS-France humidity sensor, the HTG3500 Series are dedicated humidity and temperature plug and play transducers designed for OEM applications where reliable and accurate measurements are needed. Direct interface with a micro-controller is made possible with the modules humidity linear voltage and direct NTC outputs. The HTG3500 Series are designed for high volume and demanding applications where power consumption is critical.

FEATURES

- Demonstrated reliability and long term stability
- Reliability not affected by repeated condensation

APPLICATIONS


- Automotive
- Home Appliance
- Printers

PERFORMANCE SPECS

MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Storage Temperature	T _{stg}	-40 to +125	°C
Supply Voltage (Peak)	Vcc	20	V _{dc}
Humidity Operating Range	RH	0 to 100	%RH
Temperature Operating Range	Ta	-40 to +110	°C
Maximum Output Current (Peak)	I _{peak}	3	mA
Maximum Power	Pd	10	mW

Peak conditions: less than 10% of the operating time.

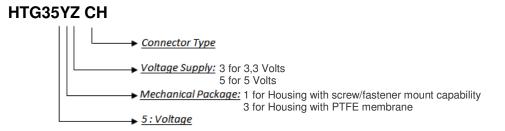
ELECTRICAL CHARACTERISTICS

(@T=23°C, $R_L>1M\Omega$ unless otherwise noted)

Humidity Characteristics	Symbol	Min	Тур	Max	Unit
Humidity Measuring Range	RH	0		100	%RH
Relative Humidity Accuracy (10% to 95%RH)			±3	±5	%RH
Temperature coefficient (10°C to 50°C)	Tcc		-0.05	-0.1	%RH/°C
Recovery time after 150 hours of condensation	t		10		s
Humidity hysteresis			+/-1		%RH
Output impedance	Z			50	Ω
Sink current capability (R _{L_Min} = 8 kOhms) ⁽¹⁾	I			1	mA
Warm up time (90% of signal)	tw		150		ms
Time Constant (at 63% of signal) 33%RH to 75%RH $^{\scriptscriptstyle (2)}$	τ		5	10	s

(1) Conditions of sink current: Vout + 0.054V (3%RH) at Vout = 0.600 V (Vout min)

(2) At 1m/s air flow


Temperature Characteristics*	Symbol	Min	Тур	Max	Unit
Nominal resistance @ 25°C	R	9.9	10	10.1	kΩ
Beta value : B25/50	В	3346	3380	3414	К
Temperature measuring range	Ta	-40		85	°C
Nominal Resistance Tolerance at 25°C	Rn		1		%
B value tolerance	В		1		%
Time Constant	т		10		S

* Except for low temperatures

POWER SUPPLY OPTION OF HTG3500 SERIES AT 3.3V_{DC} OR AT 5V_{DC}

At $3.3V_{DC}$ or at $5V_{DC}$ power supply, there is no measurable impact of type of powering on temperature and RH accuracy.

NOMENCLATURE

Specific electrical and metrological characteristics

HTG35Y3

Characteristics	Symbol	Min	Тур	Max	Unit
Voltage Supply (1) (2)	Vcc	3	3.3	3.46	V _{dc}
Nominal Output @55%RH	Vout	1.462	1.515	1.568	V
Humidity Average Sensitivity	ΔmV/RH	-	+18	-	mV/%RH
Current consumption	Icc	-	1.0	1.2	mA dc

(1) Module is ratiometric to voltage supply

(2) Maximum power supply ramp up time to VCC should be less than 20ms

HTG35Y5

Characteristics	Symbol	Min	Тур	Max	Unit
Voltage Supply (1) (2)	Vcc	4.75	5	5.25	V _{dc}
Nominal Output @55%RH	V _{out}	2.401	2.480	2.559	V
Humidity Average Sensitivity	ΔmV/RH	-	+26	-	mV/%RH
Current consumption	lcc	-	1.2	1.5	mA dc

(1) Module is ratiometric to voltage supply

(2) Maximum power supply ramp up time to VCC should be less than 20ms

TYPICAL PERFORMANCE CURVES

HUMIDITY SENSOR

Humidity Look-up Tables

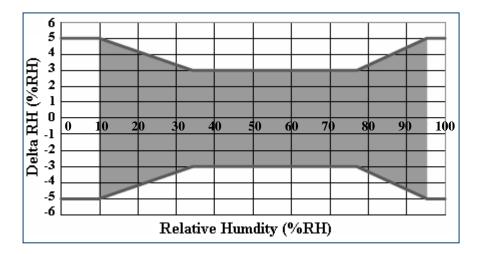
HTG35Y5 Modeled Voltage Output			HTG35Y3 Modeled Voltage Output				
R	eference Output	Values (Vcc	= 5V)	Reference Output Values (Vcc = 3.3V)			
	In any po	<u>wer mode</u>			<u>In any po</u>	<u>wer mode</u>	
RH (%)	Vout (mV)	RH (%)	Vout (mV)	RH (%)	Vout (mV)	RH (%)	Vout (mV)
10	1235	55	2480	10	690	55	1515
15	1390	60	2605	15	795	60	1595
20	1540	65	2730	20	895	65	1680
25	1685	70	2860	25	990	70	1765
30	1825	75	2990	30	1080	75	1850
35	1960	80	3125	35	1170	80	1940
40	2090	85	3260	40	1255	85	2030
45	2220	90	3400	45	1345	90	2120
50	2350	95	3530	50	1430	95	2205

POLYNOMIAL EQUATIONS

$$\begin{split} V_{out} &= 8.43 E^{-4} \ RH^3 \ \text{--} \ 0.1485 \ RH^2 \ \text{+-} \ 34.16 \ RH \ \text{+-} \ 909 \\ RH &= -1.564 E^{-9} V_{out}{}^3 \ \text{+-} \ 1.205 E^{-5} V_{out}{}^2 \ \text{+-} \ 8.22 E^{-3} V_{out} \ \text{--} \ 15.6 \\ & \textit{with} \ V_{out} \ \textit{in} \ \textit{mV} \ \textit{and} \ \textit{RH} \ \textit{in} \ \% \end{split}$$

LINEAR EQUATIONS

 $V_{out} = 26.23 \text{ RH} + 1032$ RH = 0.03812 V_{out} - 39.36 with V_{out} in mV and RH in %


POLYNOMIAL EQUATIONS

 $V_{out} = 5.57E^{-4} RH^3 - 9.81E^{-2} RH^2 + 22.55 RH + 477.2$ RH = -5.38E⁻⁹ V_{out}³ + 2.55E⁻⁵ V_{out}² + 1.9E⁻² V_{out} - 13.5

with Vout in mV and RH in %

LINEAR EQUATIONS

 $V_{out} = 17.52 \text{ RH} + 544.1$ RH = 0.057 $V_{out} - 31.0$ with V_{out} in mV and RH in % • Humidity error budget conditions at 23°C

HTG3500 series modules are specified for maximum accuracy measurements within 10 to 95 %RH.

Excursion out of this range (< 10% or > 95% RH, including condensation) does not affect the reliability of HTG3500 series characteristics.

TEMPERATURE SENSOR

• Typical temperature output

Depending on the needed temperature measurement range and associated accuracy, we suggest two methods to access to the NTC resistance values.

$$R_T = R_N \times e^{\beta \left(\frac{1}{T} - \frac{1}{T_N}\right)}$$

 R_T NTC resistance in Ω at temperature T in K

- R_N NTC resistance in Ω at rated temperature T in K
- T, T_N Temperature in K
- β Beta value, material specific constant of NTC
- e Base of natural logarithm (e=2.71828)

 \bigcirc The exponential relation only roughly describes the actual characteristic of an NTC thermistor can, however, as the material parameter β in reality also depend on temperature. So this approach is suitable for describing a restricted range around the rated temperature or resistance with sufficient accuracy.

© For practical applications, a more precise description of the real R/T curve may be required. Either more complicated approaches (e.g. the Steinhart-Hart equation) are used or the resistance/temperature relation as given in tabulation form. The below table has been experimentally determined with utmost accuracy for temperature increments of 1 degree.

Actual values may also be influenced by inherent self-heating properties of NTCs. Please refer to MEAS-France Application Note HPC106 "Low power NTC measurement".

Temperature Look-up Table

Temp	R	Temp	R] [Temp	R		Temp	R	7
(°C)	(Ω)	(°C)	(Ω)	1 [(°C)	(Ω)		(°C)	(Ω)	1
-40	195652	0 O	27219	1	40	5834		80	1669	
-39	184917	1	26076	1 1	41	5636		81	1622	
-38	174845	2	24988	1 1	42	5445		82	1578	
-37	165391	3	23951	1 1	43	5262		83	1535	
-36	156513	4	22963		44	5086		84	1493	
-35	148171	5	22021		45	4917		85	1452	
-34	140330	6	21123		46	4754		86	1413	
-33	132958	7	20267		47	4597		87	1375	
-32	126022	8	19450		48	4446		88	1338	
-31	119494	9	18670		49	4301		89	1303	
-30	113347	10	17926		50	4161		90	1268	
-29	107565	11	17214		51	4026		91	1234	
-28	102116	12	16534		52	3896		92	1202	
-27	96978	13	15886		53	3771		93	1170	
-26	92132	14	15266		54	3651		94	1139	
-25	87559	15	14674] [55	3535		95	1110	
-24	83242	16	14108		56	3423		96	1081	
-23	79166	17	13566		57	3315		97	1053	
-22	75316	18	13049		58	3211		98	1026	
-21	71677	19	12554		59	3111		99	999	
-20	68237	20	12081		60	3014		100	974	
-19	64991	21	11628		61	2922		101	949	
-18	61919	22	11195		62	2834		102	925	
-17	59011	23	10780		63	2748		103	902	
-16	56258	24	10382		64	2666		104	880	
-15	53650	25	10000		65	2586		105	858	
-14	51178	26	9634		66	2509		106	837	
-13	48835	27	9284		67	2435		107	816	
-12	46613	28	8947		68	2364		108	796	
-11	44506	29	8624		69	2294		109	777	
-10	42506	30	8315		70	2228		110	758	
-9	40600	31	8018		71	2163				
-8	38791	32	7734		72	2100		Delta Temperature	corresponding to NTC dev	viation (°C)
-7	37073	33	7461		73	2040	2,5			
-6	35442	34	7199		74	1981				
-5	33892	35	6948		75	1925	ົ ^{2,0}			
-4	32420	36	6707		76	1870	en 1.5			
-3	31020	37	6475		77	1817	berat			
-2	29689	38	6253		78	1766	1,0 1,5 1,5			
-1	28423	39	6039		79	1716	leita			
				- •			0,5	\rightarrow		_

0.1°C tolerance on Resistance Measurement

20 40 Temperature (°C) 60

80

100

0,0

-40

-20

0

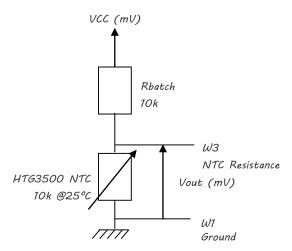
Steinhart-Hart coefficients

According to the equation below, the Steinhart-Hart coefficients for the operating temperature range for HTG3500 products thermistor are:

$$\frac{1}{T} = a + b * \ln(R) + C * \ln(R) * \ln(R) * \ln(R)$$

R NTC resistance in Ω at temperature T in K

T Temperature in K


- a Constant value (a= 8.61393E-04)
- b Constant value (b= 2.56377E-04)
- c Constant value (c= 1.68055E-07)

Temperature Interface circuit

Concerning the temperature sensor of the HTG3500 Series products, the following measuring method described below is based on a voltage bridge divider circuit. It uses only one resistor component (Rbatch) at 1% to design HTM2500 temperature sensor interfacing circuit.

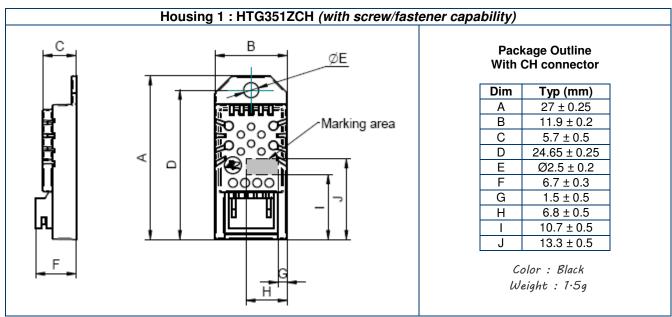
Rbatch is chosen to be equal to NTC @25°C to get: Vout = Vcc/2 @25°C.

The proposal method connects Rbatch to Vcc (5Vdc) and NTC to Ground. It leads to a negative slope characteristic (Pull-Up Configuration).

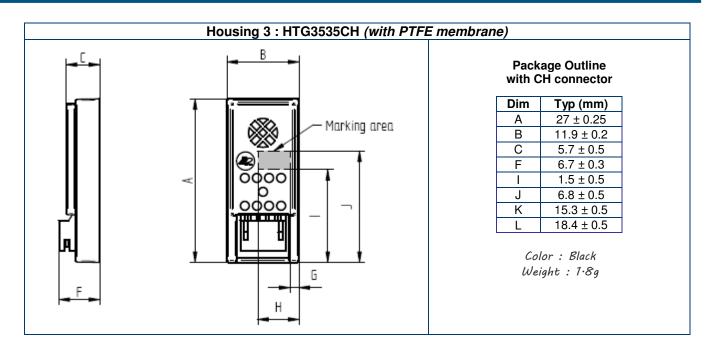
$$V_{OUT}(mV) = \frac{Vcc(mV) * NTC_{HTG3500}(\Omega)}{R_{batch}(\Omega) + NTC_{HTG3500}(\Omega)}$$

Temperature (°C)	Resistance (Ω)	Pull-Up Configuration Vout (mV)
-40	195652	4757
-30	113347	4595
-20	68237	4361
-10	42506	4048
0	27219	3657
10	17926	3210
20	12081	2736
25	10000	2500
30	8315	2270
40	5834	1842
50	4161	1469
60	3014	1158
70	2228	911
80	1669	665
90	1268	563
100	974	444
110	758	352

CONNECTING AND MECHANICAL CHARACTERISTICS


CONNECTING CHARACTERISTICS

Connector Type	Symbo I	Overview	Housing	Connector Pitch	Connector Footprint	Mating Connector *
Side Connector	СН		1&3	-	● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	JST ZHR-4


* For alternate connector type, please contact factory.

Р	Pin Out Assignment				
N°	Function				
1	Ground				
2	Vcc – Voltage Supply				
3	NTC – Temperature				
4	Vout – Humidity				

MECHANICAL CHARACTERISTICS: HTG3500 SERIES PACKAGE OUTLINE

Housing 1 can be fixed with a M2 screw. The recommended maximum mounting torque is 0.22 Nm.

RESISTANCE TO PHYSICAL AND CHEMINAL STRESSES

HTG3500 Series have passed through qualification processes of MEAS-France including vibration, shock, storage, high temperature and humidity, ESD.

HTG3500 Series contain circuits to protect its inputs and outputs against Electrostatic discharges (ESD) up to ± 15 kV, air discharge.

HTG3500 Series are protected against EMC interferences.

HTG3500 Series are protected against reverse polarity.

Additional tests under harsh chemical conditions demonstrate good operation in presence of salt atmosphere, SO₂ (0.5%), H₂S (0.5%), O₃, NO_x, NO, CO, CO₂, Softener, Soap, Toluene, acids (H₂SO₄, HNO₃, HCl), HMDS, Insecticide, Cigarette smoke, a non-exhaustive list.

HTG3500 Series are not light sensitive.

ORDERING INFORMATION

HTG35YZ CH

Х		Y Z					
Output voltage	Housing		Housing		Voltage	e supply	Connector Type
5	1	3	3	5			
Voltage	With screw/fastener	With PTFE membrane	3,3V	5	СН		

Product	Order Reference
HTG3513CH	HPP815A533
HTG3515CH	HPP815A535
HTG3535CH	HPP815F535

EUROPE

Measurement Specialties, Inc - MEAS France Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3 FRANCE Tel:+33 (0)5 820.822.02 Fax:+33 (0)5.820.821.51 Sales: humidity.sales@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.