Applications

- Portable electronic devices.
- 3C products.
- Smart phones.
- Digital cameras.

Features

- Compact size.
- Low-profile.
- Long operation life.
- Grounded options available.

LPT Series - Low-Profile Tactile Switches

TE Connectivity is pleased to introduce its LPT Series of Low-Profile Tactile Switches. Given the various combinations of Size and Height measures offered by the LPT Series, these tactile switches are ideal for a wide variety of applications within the portable electronics market.

The Low-Profile Tactile Switches will be characterised by SMT mounting available in Tab, Gull-Winged, and J-Bend terminations.

LPT Series - Family Classification

Family	USLPT (Ultra-Mini Size)	MCSLPT (Micro-Mini Size)	MSLPT (Mini Size)
Body Size	$2.6 \times 1.6 \mathrm{~mm}$ to $3.7 \times 3.7 \mathrm{~mm}$	$4.6 \times 4.4 \mathrm{~mm}$ to $4.8 \times 4.8 \mathrm{~mm}$	$5.2 \times 5.2 \mathrm{~mm}$
Height	0.35 mm to 0.65 mm	0.55 mm to 1.05 mm	0.80 mm to 2.00 mm
Mounting	Tab / J-Bend	J-Bend	Gull-Wing / J-Bend
Grounding	No	No	Yes
Packaging	Tape \& Reel	Tape \& Reel	Tape \& Reel

Dimensions in
millimetres unless otherwise specified

MCSLPT Family - $4.6 \times 4.4 m m$

	Contact Rating	50mA, 12VDC
	Contact Resistance	$100 \mathrm{~m} \Omega$ Max.
	Insulation Resistance	100M Ω Min. 500VDC
	Dielectric Strength	300VAC/1 Minute
	Operating Force	$\begin{aligned} & 100 \pm 50 \operatorname{gf}(-1) / 160 \pm 50 \operatorname{gf}(-2) \\ & 200 \pm 50 \operatorname{gf}(-3) / 260 \pm 50 \operatorname{gf}(-4) \end{aligned}$
	Travel	0.20 mm
	Operating Life	$\begin{gathered} 100 \& 160 \mathrm{gf}=1,000,000 \text { Cycles Min. } \\ 200 \text { \& 260gf }=500,000 \text { Cycles Min. } \end{gathered}$
	Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Storage Temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

Features	Applications
$\bullet \quad$ Compact size.	$\bullet \quad$ Digital cameras.
$\bullet \quad$ Extended operating life.	$\bullet \quad$ Smart Phones.
$\bullet \quad$ Low profile.	$\bullet \quad$ Portable electronic devices.

Circuit

-MSLPT4644

-MSLPT4644PH

Part Numbering

Document \#2337232-1	Dimensions in	Dimensions Shown for	For Email, phone or live chat,
$(07 / 08 / 20)$	millimetres unless	reference purposes only.	go to: www.te.com/help
Rev A1	otherwise specified	Specifications subject to change	

Diagrams

-MCSLPT4644 (No Pushbutton \& No Hole)

P.C.B. LAYOUT

-MCSLPT4644PH (W/Pushbutton \& No Hole)

PN List

Smart PN	Body Size	Height	Mounting	Pitch	Operation Force	Packaging	MOQ	TE PN
MCSLPT4644B1TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	100 gf	Tape \& Reel	2,500	$2337234-1$
MCSLPT4644B2TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	160 gf	Tape \& Reel	2,500	$2337234-2$
MCSLPT4644B3TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	200 gf	Tape \& Reel	2,500	$2337234-3$
MCSLPT4644B4TR	$4.6 \times 4.4 \mathrm{~mm}$	0.55 mm	J-Bend	3.50 mm	260 gf	Tape \& Reel	2,500	$2337234-4$
MCSLPT4644B1PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	100 gf	Tape \& Reel	1,500	$2337235-1$
MCSLPT4644B2PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	160 gf	Tape \& Reel	1,500	$2337235-2$
MCSLPT4644B3PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	200 gf	Tape \& Reel	1,500	$2337235-3$
MCSLPT4644B4PHTR	$4.6 \times 4.4 \mathrm{~mm}$	1.05 mm	J-Bend	3.50 mm	260 gf	Tape \& Reel	1,500	$2337235-4$

Document \#2337232-1	Dimensions in	Dimensions Shown for	For Email, phone or live chat,
$(07 / 08 / 20)$	millimetres unless	reference purposes only.	go to: www.te.com/help
Rev A1	otherwise specified	Specifications subject to change	

1. Style

"Tactile Switches" are mainly used as signal switches of electric devices, with the general requirements of mechanical and electrical characteristic.
1.1 Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1.2 Storage Temperature Range: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
2. Current Range: 50 mA , 12VDC Max.
3. Type of Actuation: Tactile feedback
4. Test Sequence:

	Item	Description	Test Conditions	Requirements
Appearance	1	Visual Examination	By visual examination check without any out pressure \& testing.	There shall be no defects that affect the serviceability of the product.
Electrical Performance	2	Contact Resistance	Applying a static load (1.5 to $2 x$ actuating force) to the centre of the actuator. Measurements shall be made with a 1 kHz small current contact resistance meter.	$100 \mathrm{~m} \Omega$ Max.
	3	Insulation Resistance	Measurements shall be made following application of 500VDC potential across terminals and cover for 1 minute ± 5 seconds.	100M 2 Min.
	4	Dielectric Withstanding Voltage	$300 \mathrm{VAC}(50 \mathrm{~Hz}$ or 60 Hz) shall be applied across terminals and cover for 1 minute.	There shall be no breakdown or flashover.
	5	Bounce	3 to 4 operations at a rate of 1 cycles per	10 m seconds Max.

Document \#2337232-1	Dimensions in	Dimensions Shown for		
(07/08/20)	millimetres unless			
Rev A1			\quad	otherwise specified
:---				
reference purposes only.	\quad	Specifications subject to		
:---				
change	\quad	For Email, phone or live chat,		
:---				
go to: www.te.com/help				

Mechanical Performance	6	Operating Force	Applied in the direction of operation.	$\begin{gathered} 100 \pm 50 \mathrm{gf} \\ (0.98 \pm 0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 160 \pm 50 \mathrm{gf} \\ (1.57 \pm 0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 200+50 \mathrm{gf} \\ (1.96 \pm 0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 260 \pm 50 \mathrm{gf} \\ (2.55 \pm 0.49 \mathrm{~N}) \end{gathered}$
	7	Stroke	Placing the switch such that the direction of switch operation is vertical and then gradually increasing the load applied to the centre of the actuator to a stop shall be measured.	$0.2 \pm 0.1 \mathrm{~mm}$			
	8	Control strength	Static load of 3 Kg (29.4 N) shall be applied in the operating direction of the control unit for 15 seconds.	As shown in items 4 to 6.			
	9	Solder Heat Resistance	(PCB is 1.2 mm in thickness)	1) Shall be free from pronounced backlash and falling-off or breakage terminals. 2) As shown in item 4 and 5 . 3)Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.			
	10	Vibration	Shall be vibrated in accordance with Method 201A of MIL-STD-202F 1) Swing distance $=1.5 \mathrm{~mm}$ 2) Frequency: $10-55-10 \mathrm{~Hz}$ in 1-min/cycle. 3) Direction: 3 vertical directions including the directions of operation. 4) Test time: 2 hours each direction.	1) As shown in item 4 to 7 . 2)Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3)Insulation Resistance: $10 \mathrm{M} \Omega$ Min.			
	11	Shock	Shall be shocked in accordance with Method 213B condition A of MIL-STD202F 1) Acceleration: 50 G . 2) Action Time: $11 \pm 1 \mathrm{~m} \mathrm{sec}$. 3) Testing Direction: 6 sides. 4) Test cycle: 3 times in each direction.	1) As shown in item 4 to 7 . 2)Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3)Insulation Resistance: $10 \mathrm{M} \Omega$ Min.			
Durability	12	Operating Life	Measurements shall be made following the test forth below: 1) $5 \mathrm{~mA}, 5 \mathrm{VDC}$ resistive load. 2) Applying a static load the force to the centre of the actuator in the direction of operation. 3) Cycle of Operation: - 100 \& $160 \mathrm{gf}=1,000,000$ Cycles Min. - 200 \& $260 \mathrm{gf}=500,000$ Cycles Min.	1) As shown in item 4 to 5 . 2) Operating force: $\pm 50 \%$ of initial force. 3) Contact Resistance: 10Ω Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min. 5) Bounce: 20 m seconds Max.			

Document \#2337232-1
(07/08/20)
Rev A1

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change go to: www.te.com/help

Environmental Endurance	13	Resistance Low Temperature	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $-30 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 7 . 2) Contact Resistance: 200m Ω Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega \mathrm{Min}$.
	14	Heat Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $80 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 7 . 2) Contact Resistance: 200m Ω Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega \mathrm{Min}$.
	15	Humidity Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $60 \pm 2^{\circ} \mathrm{C}$ 2) Relative Humidity: 90to95\% 3) Time: 96 hours	1) As shown in item 4 to 7 . 2) Contact Resistance: 200m Ω Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.

5. Soldering Conditions:

■ Condition for Soldering MCSLPT Series:

- The condition noted above is the temperature of the copper foil on the surface of the PCB. There are cases where the temperature of the board greatly differs from the surface of the switch. Do not allow the surface temperature of the switch to exceed $260^{\circ} \mathrm{C}$.

■ Manual Soldering

Soldering Temperature: $350^{\circ} \mathrm{C}$ Max.
Continuous Soldering Time: 5 second Max.
Document \#2337232-1
(07/08/20)

Dimensions Shown for
reference purposes only.
Specifications subject to change go to: www.te.com/help

- Precautions in Handling

1. Care should be exercised so that flux from the top surface of the printed circuit board does not adhere to the switch.
2. Do not wash the switch.

- Operating precautions

1. Do not actuate the switch with excessive force.
2. Discontinue force after the switch has been actuated so as to avoid deformation of the components of the switch. Deformation of the components may cause the switch to malfunction.
3. Align the plunger with the switch to insure proper operation.

- Notes on storage conditions

Avoid the following as exposure may affect the performance and/or the soldering of the switch:

1. Temperature of -10 to $+40^{\circ} \mathrm{C} \& 85 \%$ humidity.
2. Exposure to corrosive gas.
3. Storage over 6 months
4. Exposure to direct sunlight.
5. Storage conditions should prevent heavy impact or loading.
6. After opening the package, unused switches must be repackaged in a moisture-proof and airtight environment.

MCSLPT Family - $4.8 \times 4.8 m m$

	Contact Rating	50mA, 12VDC
	Contact Resistance	$100 \mathrm{~m} \Omega$ Max.
	Insulation Resistance	100M Ω Min. 100VDC
	Dielectric Strength	100VAC/1 Minute
	Operating Force	$\begin{gathered} 100 \pm 50 \operatorname{gf}(-1) / 160 \pm 50 \operatorname{gf}(-2) \\ 200 \pm 50 \operatorname{gf}(-3) / 260 \pm 50 \operatorname{gf}(-4) \\ 360 \pm 60 \operatorname{gf}(-5) \\ \hline \end{gathered}$
	Travel	0.20 mm
	Operating Life	$\begin{gathered} 100 \& 160 \mathrm{gf}=1,000,000 \text { Cycles Min. } \\ 200 \& 260 \mathrm{gf}=500,000 \text { Cycles Min. } \\ 360 \mathrm{gf}=200,000 \text { Cycles Min. } \end{gathered}$
	Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Features	Applications		
\bullet	Compact size.		
\bullet	Extended operating life.		
\bullet	Low profile.	\quad Digital cameras. \quad •	Smart Phones.
:---			

Circuit

Part Numbering

Document \#2337232-1	Dimensions in	Dimensions Shown for	For Email, phone or live chat,
$(07 / 08 / 20)$	millimetres unless	reference purposes only.	go to: www.te.com/help
Rev A1	otherwise specified	Specifications subject to change	

Diagrams

-MCSLPT4848A

-MCSLPT4848C

PN List

Smart PN	Body Size	Height	Mounting	Pitch	Operation Force	Packaging	MOQ	TE PN
MCSLPT4848A1DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	100 gf	Tape \& Reel	2,500	$2337232-1$
MCSLPT4848A2DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	160 gf	Tape \& Reel	2,500	$2337232-2$
MCSLPT4848A3DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	200 gf	Tape \& Reel	2,500	$2337232-3$
MCSLPT4848A4DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	260 gf	Tape \& Reel	2,500	$2337232-4$
MCSLPT4848A5DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	2.80 mm	360 gf	Tape \& Reel	2,500	$2337232-5$
MCSLPT4848C1DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	100 gf	Tape \& Reel	2,500	$2337233-1$
MCSLPT4848C2DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	160 gf	Tape \& Reel	2,500	$2337233-2$
MCSLPT4848C3DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	200 gf	Tape \& Reel	2,500	$2337233-3$
MCSLPT4848C4DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	260 gf	Tape \& Reel	2,500	$2337233-4$
MCSLPT4848C5DTR	$4.8 \times 4.8 \mathrm{~mm}$	0.55 mm	J-Bend	3.70 mm	360 gf	Tape \& Reel	2,500	$2337233-5$

Document \#2337232-1
(07/08/20)
Rev A1

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change

For Email, phone or live chat, go to: www.te.com/help

1. Style

"Tactile Switches" are mainly used as signal switches of electric devices, with the general requirements of mechanical and electrical characteristic.
1.1 Operating Temperature Range: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
1.2 Storage Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
2. Current Range: $50 \mathrm{~mA}, 12 \mathrm{VDC}$ Max.
3. Type of Actuation: Tactile feedback
4. Test Sequence:

	Item	Description	Test Conditions	Requirements
Appearance	1	Visual Examination	By visual examination check without any out pressure \& testing.	There shall be no defects that affect the serviceability of the product.
Electrical Performance	2	Contact Resistance	Applying a static load (1.5 to $2 x$ actuating force) to the centre of the actuator. Measurements shall be made with a 1 kHz small current contact resistance meter.	$100 \mathrm{~m} \Omega$ Max.
	3	Insulation Resistance	Measurements shall be made following application of 100VDC potential across terminals and cover for 1 minute ± 5 seconds.	100M Ω Min.
	4	Dielectric Withstanding Voltage	$100 \mathrm{VAC}(50 \mathrm{~Hz}$ or 60 Hz) shall be applied across terminals and cover for 1 minute.	There shall be no breakdown or flashover.
	5	Bounce	3 to 4 operations at a rate of 1 cycles per second	

Document \#2337232-1	Dimensions in (07/08/20)	Dimensions Shown for oillimetres unless Reverence purposes only.	For Email, phone or live chat, go to: www.te.com/help		
otherwise specified				\quad	Specifications subject to
:---					
change	\quad				

Mechanical Performance	6	Operating Force	Applied in the direction of operation.	$\begin{gathered} 100 \pm 50 \mathrm{gf} \\ (0.98+0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 160+50 \mathrm{gf} \\ (1.57+0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 200 \pm 50 \mathrm{gf} \\ (1.96+0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 260 \pm 50 \mathrm{gf} \\ (2.55+0.49 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 360 \pm 60 \mathrm{gf} \\ (3.53 \pm 0.59 \mathrm{~N}) \end{gathered}$
	7	Stroke	Placing the switch such that the direction of switch operation is vertical and then gradually increasing the load applied to the centre of the actuator to a stop shall be measured.	$0.2 \pm 0.1 \mathrm{~mm}$				
	8	Control strength	Static load of 3 Kg (29.4N) shall be applied in the operating direction of the control unit for 15 seconds.	As shown in items 4 to 6.				
	9	Solder Heat Resistance	(PCB is 1.2 mm in thickness)	1) Shall be free from pronounced backlash and falling-off or breakage terminals. 2) As shown in item 4. 3) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.				
	10	Vibration	Shall be vibrated in accordance with Method 201A of MIL-STD-202F 1) Swing distance $=1.5 \mathrm{~mm}$ 2) Frequency: $10-55-10 \mathrm{~Hz}$ in 1-min/cycle. 3) Direction: 3 vertical directions including the directions of operation. 4) Test time: 2 hours each direction.	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega$ Min.				
	11	Shock	Shall be shocked in accordance with Method 213B condition A of MIL-STD-202F 1) Acceleration: 50 G . 2) Action Time: $11 \pm 1 \mathrm{~m}$ sec. 3) Testing Direction: 6 sides. 4) Test cycle: 3 times in each direction.	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega \mathrm{Min}$.				
Durability	12	Operating Life	Measurements shall be made following the test forth below: 1) $5 \mathrm{~mA}, 5 \mathrm{VDC}$ resistive load 2) Applying a static load the force to the centre of the actuator in the direction of operation. 3) Cycle of Operation: - 100 \& $160 \mathrm{gf}=1,000,000$ Cycles Min. - 200 \& $260 \mathrm{gf}=500,000$ Cycles Min. - 360gf = 200,000 Cycles Min.	1) As shown in item 4 to 5 . 2) Operating force: $\pm 50 \%$ of initial force. 3) Contact Resistance: 10Ω Max. 4) Insulation Resistance: $10 \mathrm{M} \Omega$ Min. 5) Bounce: 20 m seconds Max.				

Document \#2337232-1
(07/08/20)
Rev A1

Dimensions in millimetres unless otherwise specified

Dimensions Shown for reference purposes only. Specifications subject to change go to: www.te.com/help

Environmental Endurance	13	Low Temperature Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $-40 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: 10M Ω Min.
	14	High Temperature Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $90 \pm 2^{\circ} \mathrm{C}$ 2) Time: 96 hours	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: 10M Ω Min.
	15	Humidity Resistance	Following the test set forth below the sample shall be left in normal temperature and humidity conditions for 1 hour before the measurements are made: 1) Temperature: $60 \pm 2^{\circ} \mathrm{C}$ 2) Relative Humidity: 90 to 95% 3) Time: 96 hours	1) As shown in item 4 to 6 . 2) Contact Resistance: $200 \mathrm{~m} \Omega$ Max. 3) Insulation Resistance: $10 \mathrm{M} \Omega \mathrm{Min}$.

5. Soldering Conditions:

Condition for Soldering MCSLPT Series:

■ The condition noted above is the temperature of the copper foil on the surface of the PCB. There are cases where the temperature of the board greatly differs from the surface of the switch. Do not allow the surface temperature of the switch to exceed $260^{\circ} \mathrm{C}$.

Document \#2337232-1	Dimensions in	Dimensions Shown for	For Email, phone or live chat,
$(07 / 08 / 20)$	millimetres unless	reference purposes only.	go to: www.te.com/help
Rev A1	otherwise specified	Specifications subject to change	

■ Manual Soldering
Soldering Temperature: $350^{\circ} \mathrm{C}$ Max.
Continuous Soldering Time: 5 second Max.

- Precautions in Handling

1. Care should be exercised so that flux from the top surface of the printed circuit board does not adhere to the switch.
2. Do not wash the switch.

■ Operating precautions

1. Do not actuate the switch with excessive force.
2. Discontinue force after the switch has been actuated so as to avoid deformation of the components of the switch. Deformation of the components may cause the switch to malfunction.
3. Align the plunger with the switch to insure proper operation.

- Notes on storage conditions

Avoid the following as exposure may affect the performance and/or the soldering of the switch:

1. Temperature of -10 to $+40^{\circ} \mathrm{C} \& 85 \%$ humidity.
2. Exposure to corrosive gas.
3. Storage over 6 months
4. Exposure to direct sunlight.
5. Storage conditions should prevent heavy impact or loading.
6. After opening the package, unused switches must be repackaged in a moisture-proof and airtight environment.
