TEST REPORT

Menlo Park, California 92024

58722-6 REPORT NO. ND 58722 OUR JOB NO. ___ CONTRACT A02011-2 YOUR P. O. NO. -

29 - Page Report

DATE 21 December 1982

ENVIRONMENTAL QUALIFICATION TEST REPORT

 \mathbf{OF}

RAYCHEM NUCLEAR PLANT KIT (NPK)

FOR

RAYCHEM CORPORATION

MENLO PARK, CALIFORNIA

STATE OF CALIFORNIA SS-Ray C. Myrick

, being duly sworn, deposes and says: That the information contained in this report is the result of complete and carefully conducted tests and is to the best of his knowledge true and contained in all carefully conducted tests and is to the best of his knowledge true and correct in all respent

day of December 19 82 SUBSCRIBED and worn to before me this 20 U Notary Public in and for the County of Riverside, State of California

19_83

	My Commission exercitor CEAT CEAT	ł
	CATHERINE C KELTY	ł
	NOTARY PUBLIC - CALIFORNIA	Ż
	RIVERSIDE COUNTY	Ş
W-867A	My comm. expires .JL 14, 1983	ì

DYNAMICS
DEPARTMENT
DEPT. MGR. James J. Anderson
TEST ENGINEER Luther F. Goad
REGISTERED PROFESSIONAL ENGINEER
DCAS-QAR VERIFICATION
QUALITY ASSURANCE

RAYCHEM CORPORATION 300 Constitution Drive

TABLE OF CONTENTS

Section	Title	Page
1.0	SUMMARY	1
2.0	TEST SPECIMEN	2
	2.1 Materials and Construction	2
3.0	TEST PROGRAM	6
	3.1 Test Sequence3.2 Functional Test Procedures3.3 Specimen Preconditioning3.4 LOCA/MSLB Environmental Exposure	6 6 7 8
4.0	TEST RESULTS	12
	4.1 Functional Test Results4.2 LOCA/MSLB Environment4.3 Post LOCA/MSLB Inspection	12 12 13
5.0	CONCLUSIONS	14
	TABLES	17
	APPENDICES	A1 and B1

FIGURES

<u>Page</u>
3
3
5
5
9
10
11

TABLES

Table 1 - Test Specimen Conditioning Summary	17
Table 2 - Summary of Insulation Resistance Measurements	18
Table 3 - Current Monitoring of Test Specimen	20
Table 4 - Post LOCA/MSLB Inspection Summary	21

APPENDICES

Appendix A - Certificate of Radiation Dose	A1
Appendix B - List of Data Acquisition Instruments	B1

1.0 <u>SUMMARY</u>

Six specimens of Raychem Nuclear Plant Transition Splice Assemblies were subjected to an environmental qualification type test to demonstrate their ability to maintain functional operability under all service conditions postulated to occur within the containment of nuclear generating stations during the installed life of the product. The qualification program was based upon the methods, procedures and guidelines set forth in IEEE Standards 323-1974¹ and 383-1974² as endorsed by USNRC Regulatory Guides 1.89³ and 1.131⁴ respectively.

The test specimens were exposed to a single environmental profile encompassing temperatures up to 228°C (442°F) that enveloped the conditions produced by main steamline break and loss-of-coolant accidents (MSLB/LOCA), in accordance with the simulated environmental profile preferred by NUREG-0588⁵ for qualifying equipment located inside containment. A caustic solution was sprayed on the test specimens throughout the environmental exposure to simulate conditions that would occur when containment spray systems actuate. Extremes in power supply voltage ranges were simulated by energizing the test specimens at the maximum allowable ampacity of the No.14 AWG insulated conductors and at full rated voltage (1000V a-c).

The effects of installed life were simulated by the accelerated aging of three test specimens to an equivalent service life in excess of 42 years at 90°C (194°F). Accelerated aging was accomplished via thermal exposure at a rate based upon the Arrhenius data documented in Raychem Report EDR-5046.⁶ These specimens were then exposed to gamma radiation at a level to include both the postulated LOCA accident dose and a dose equivalent to an installed assembly containment exposure integrated over a 40-year period. The remaining three specimens received only the postulated accident radiation dose to simulate beginning of life LOCA/MSLB exposure. The thermally aged and the unaged

Page 2

specimens received in excess of 2.15 x 10⁸ rads gamma and 1.65 x 10⁸ rads gamma respectively.

Acceptance criterion was established as the specimen's ability to maintain rated voltage and current during and after the environmental exposure. Margin was demonstrated by the specimen's ability to pass voltage withstand testing at 80 volts per mil based on the wire insulation thickness.

Based upon the satisfactory performance of the specimens during this test program, it was concluded that the Raychem Transition Splice is functional and suitable for use inside the containment of nuclear power generating stations.

The LOCA/MSLB environmental exposure was performed by Wyle Laboratories, Norco, California. Thermal preconditioning of samples was performed at Raychem Corporation, Menlo Park, California. Radiation sample preconditioning was performed at Isomedix Inc., Parsippany, New Jersey.

2.0 <u>TEST SPECIMEN</u>

2.1 <u>Materials and Construction</u>

Each test specimen was constructed of Raychem's nuclear grade extrusion and molding materials. All components conformed to the applicable Raychem Specification Component Drawings referenced in Figures 1 and 2.

Figure 1 depicts the sample construction specified in Raychem Test Plan NPE-TP-81-03.[®] Figure 2 shows the deviation from that construction required

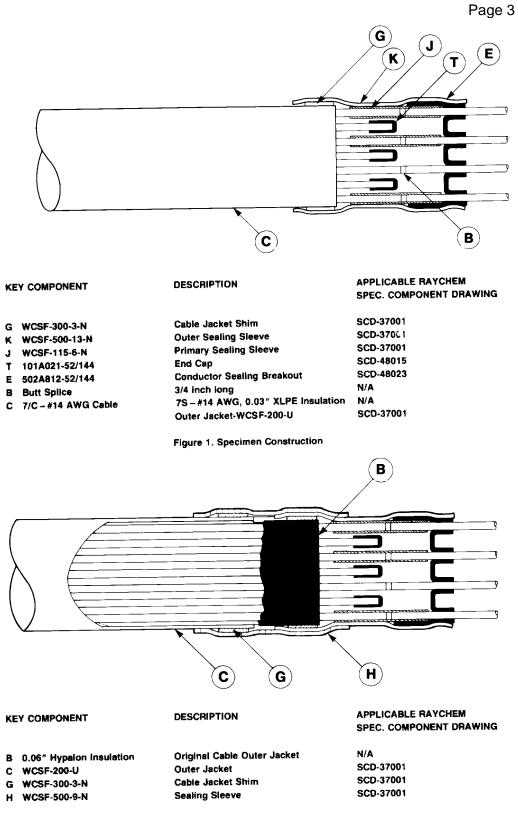


Figure 2. Specimen Construction

for thermally aged specimens. This deviation was required because the outer jacket of the multiconductor cable did not withstand the thermal aging profile required of the Raychem materials. Figures 3 and 4 show the condition of the outer cable jackets and single conductors after thermal aging.

2.1.2 Specimen numbers 4, 5 and 6 were assembled in the configuration shown in Figure 1. Specimens 1, 2, and 3 differ in that components C, G, and H, as shown in Figure 2, were added after the outer jacket was removed to the extent possible and all specimen conditioning was completed. These three components were added to restore the multiconductor outer jackets which did not withstand thermal conditioning. This was considered acceptable since the seal at the transition end was considered to be the significant portion of this configuration under test. This portion was not modified. The modified portion was not considered to be a significant loss as the identical geometry was tested in other constructions included in this same test program.

All sample assembly was accomplished by Raychem personnel using Raychem's standard cable preparation and splice assembly procedures. The cables were cleaned with 1,1,1 Trichloroethane prior to splice assembly. The components were installed using a Raychem FH-2609, LPG portable flame heater.

2.1.3 In addition to these six specimens, several other types of products were tested in this program. The other constructions are the subject of separate reports. For clarity of data presentation, the six constructions reported herein are referenced as Specimen numbers 1 through 6. Each conductor of a single construction has been identified by the addition of -1, -2, -3, or -4 to the specimen number. Specimen numbers are cross-referenced with actual Raychem specimen identification numbers in Table 1.



Figure 3. Thermally Aged Cable

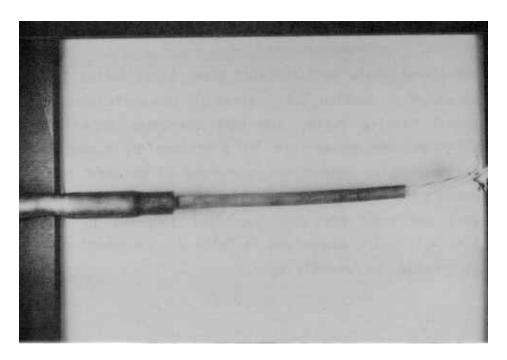


Figure 4. Thermally Aged Assembly

3.0 <u>TEST PROGRAM</u>

3.1 <u>Test Sequence</u>

In conformance with Section 6.3.2 of IEEE Standard 323-1974¹, test specimens were neither modified nor altered after the assembly described in Section 2.1.2 of this report. Each specimen was used throughout the entire test sequence. The test sequence comprising this qualification type test is listed below:

	<u>on</u>
1.Functional Tests2.Specimen Preconditioning3.Functional Tests4.LOCA/MSLB Environmental Exposu5.Functional Tests	conditioning ts invironmental Exposure

3.2 Functional Test Procedures

Functional tests were repeated three times during the test program as shown in Section 3.1. Prior to the performance of each functional testing cycle, all test specimens were immersed in tap water at room temperature for a minimum of 16 hours. Each splice assembly being tested was submerged 12 or more inches below the water's surface during the 16 hour soak. All functional tests were performed with the specimens immersed in the water bath. Test values are summarized in Table 2. Equipment calibration data is provided in Appendix B.

3.2.1 Insulation Resistance (I.R.)

After the 16 hour immersion, while still in the water bath, the I.R. of each specimen was measured. Measurements were made at 500 volts d-c after one minute of electrification. The water bath was used as the ground plane during this test.

3.2.2 Voltage Withstand

After the I.R. of each specimen was measured and while still in the water bath, a 2400 volt a-c voltage withstand test was performed on each test specimen in accordance with ICEA S-61-402, 6.11.2.⁷ Using the water bath as ground, the voltage was applied to the conductor in each specimen.

3.3 Specimen Preconditioning

3.3.1 Thermal Aging

Three specimens (numbers 1, 2, and 3) were thermally aged to simulate a service condition of over 40 years based on Arrhenius data for Raychem's nuclear grade materials as documented in Raychem Report EDR-5046.⁶ These samples were aged to an equivalent of 44.8 years installed life at 90°C (194°F). The remaining three specimens (numbers 4, 5, and 6) were not thermally aged, simulating the condition of product at the beginning of installed life. All thermal conditioning was accomplished at Raychem Corporation. Specimens were placed horizontally in a circulating air oven throughout the aging period. Aging times and temperatures used are presented in Table 1.

3.3.2 Radiation Aging

The radiation dose determined to represent the gamma exposure to installed assemblies within containment over a 40 year period was 5.0×10^7 rads. The postulated accident gamma radiation dose was 1.5×10^8 rads.

Thermally aged specimens were exposed both to the postulated accident dose, plus 10 percent margin, and the dose representing 40 years of installed life totaling 2.15×10^8 rads gamma. The samples simulating the beginning of installed life received only the postulated accident dose plus 10 percent margin for a total dose of 1.65×10^8 rads gamma.

The actual gamma radiation exposures exceeded the required 2.15×10^8 rad and 1.65×10^8 rad levels. Table 1 depicts the actual air equivalent radiation doses and associated dose rates by specimen number. The radiation source utilized was Co^{60} and the Certificate of Radiation is shown in Appendix A.

3.3.3 Functional Tests

The functional tests were again performed after specimen preconditioning as described in Section 3.2. Test values are listed in Table 2.

3.4 LOCA/MSLB Environmental Exposure

The test specimens were placed horizontally on perforated metal trays inside a pressure vessel. Extension leads were spliced to the test specimens inside the pressure vessel and insulated with Raychem WCSF-N tubing. The extension leads were brought out of the test vessel through penetrations installed in the pressure vessel wall to allow for electrical connection and monitoring.

The specimens were energized to 1.0 kV a-c to ground and carried a current of 25 amperes. Current values were samples throughout the test and are presented in Table 3. The voltage energization circuit for each test specimen was separately fused at 1/4 amp. A schematic of the energizing circuit is given in Figure 5.

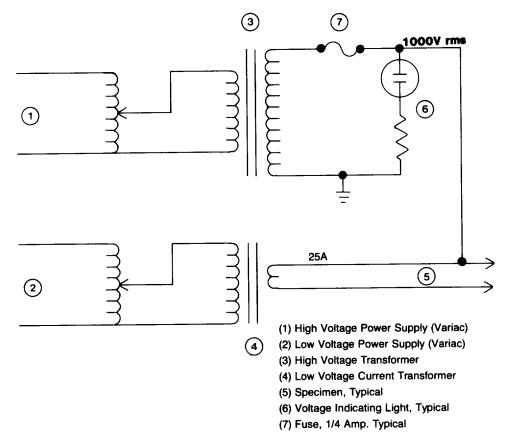
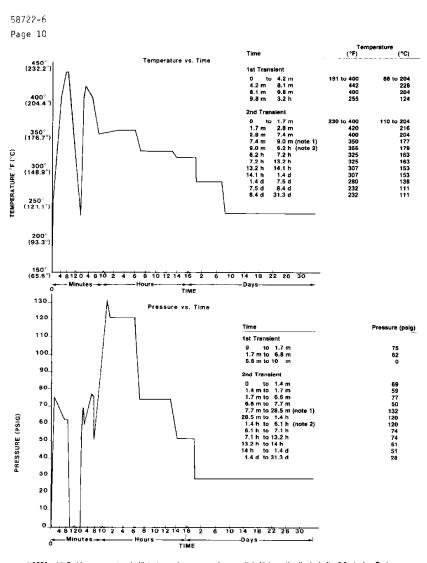
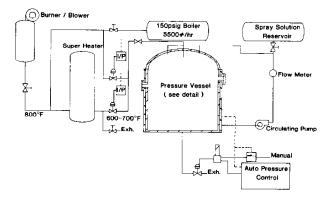



Figure 5. Energizing Circuit Schematic

A chemical spray solution consisting of 0.28 molar H_3BO_3 (3000 ppm boron), 0.064 molar $Na_2S_2O_3$, buffered with NaOH to a pH of 10.5 at 25°C (77°F) was provided in a separate reservoir. This solution was sprayed through two nozzles from the top of the vessel at a rate in excess of 0.15 gpm/ft² beginning immediately after the second temperature transient and ending upon completion of the 30-day environmental exposure (actual flow was 34 gpm). The temperatures, pressures, and spray duration throughout the test period are given in Figure 6. Figure 7 depicts a diagram of the pressure vessel used for the environmental exposure.


NOTES: (1) Problems encountered with test vessel pressure seals necessitated interrupting the test after 9.0 minutes. Test was resumed at the 177 °C (350 °F) temperature plateau and the chemical apray was initiated.

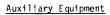

(2) Problems encountered with the test specimen extension leads and the set vessel pressure seals necessitated interrupting the test after 5 hours. The test was resumed at the 177°C (350°F) temperature plateau to complete the required exposure at this tamperature level.

Figure 6. Temperature and Pressure Profiles for Simulation of LOCA/MSLB Environment

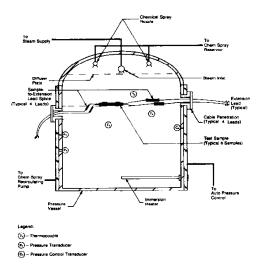


Figure 7. LOCA/MSLB Pressure Vessel and Auxiliary Equipment

4.0 <u>TEST RESULTS</u>

4.1 <u>Functional Test Results</u>

The results of all voltage withstand tests and insulation resistance measurements are listed in Table 2. The current loading values measured during the environmental exposure of the energized specimens are presented in Table 3. All specimens passed voltage withstand testing and measured good insulation resistance before and after conditioning and after the LOCA/HELB environmental exposure. Specimen numbers 1, 2, and 3 could not be energized during the environmental exposure due to failures in the non-specimen wire leads.

4.2 LOCA/MSLB Environment Exposure

The following details of the profile depicted in Figure 6 are noted:

a. The temperature of 204°C (400°F) was not reached in 10 seconds as proposed in Raychem Test Plan No. NPE-TP-81-03.[®] Attainable rise times were governed by the apparatus selected to encompass the entire scope of the Raychem test plan and precluded meeting the proposed temperature rise time.

However, during the temperature transients, both the peak temperatures and temperature durations exceeded those proposed.

Problems encountered with test vessel pressure seals and the test specimen extension leads necessitated interrupting the test after the second temperature transient and again after five hours of specimen exposure at the 177°C (350°F)

Page 13

temperature plateau. During the interruption at the 177°C (350°F) plateau, the specimens were visually inspected. All specimens appeared to be in good condition, however, tracking was visible on many of the thermally aged lead wires. Replacement of the vessel penetration seals was required at this point which necessitated replacement of test specimen extension leads.

During this replacement, the lead wires were repaired. The specimens themselves were not modified or changed in any way. The test was resumed at the 177°C (350°F) temperature plateau to complete the required specimen exposure at this level.

c. The test specimens were exposed to the LOCA/MSLB environment for 31.3 days rather than the 30 days proposed in Raychem Test 8 Plan No. NPE-TP-81-03.⁸

4.3 Post LOCA/MSLB Inspection

At the conclusion of the environmental exposure, the test vessel was flooded with tap water. The test specimens were then given a voltage withstand test and the insulation resistances were measured. Test values are listed in Table 2. The vessel was then opened and the cause for Specimen numbers 1, 2, and 3 being unable to hold rated voltage throughout the environmental exposure investigated.

At this point, specimen extension wires were severed inside the vessel and the specimens were removed for examination. The specimens unable to pass voltage withstand testing were retested in a water bath and again insulation resistance measurements were made.

Specimen numbers 1, 2, and 3 did not hold rated voltage and current throughout the exposure nor did they pass functional tests while immersed inside the test

Page 14

vessel. These specimens were retested in a water bath. With the faulty extension leads excluded from test, all specimens passed voltage withstand testing and measured satisfactory insulation resistance.

Visual inspection of all specimens showed no cracking or splitting of the Raychem materials.

A summary of these findings is presented in Table 4.

5.0 <u>CONCLUSIONS</u>

Six specimens of Raychem Nuclear Plant Transition Splice Assemblies were subjected to an environmental type test program designed to simulate the service conditions produced by main steamline break and loss-of-coolant accidents (MSLB/LOCA). The test specimens were exposed to the LOCA/MSLB environmental extremes of temperature, humidity, pressure and chemical spray while energized at maximum current and voltage. These test specimens were conditioned to simulate both the beginning of installed life and over 40 years of installed life. They were exposed to LOCA/MSLB levels of radiation to include both accident dose margin and the postulated containment radiation dose integrated over 40 years of installed life.

All specimens demonstrated the ability to insulate and seal multiconductor cable to single wire transition splices throughout the qualification test program by passing all voltage withstand testing and measuring satisfactory insulation resistance values.

Although none of the thermally aged specimens were energized during the environmental exposure, the cause of the inability to energize these specimens

was directly attributable to the overaged wires and not the specimens themselves. This conclusion was reinforced by the ability of each specimen to pass both voltage withstand testing and insulation resistance measurements when tested in a water bath with the faulty leads excluded from test. Visual inspection showed that all specimens maintained their physical integrity with no signs of splitting or cracking of the Raychem materials.

The results of this comprehensive test program provide reasonable assurance, by type test, that the Raychem Transition Seal can perform its intended function of insulating and sealing when used in these tested configurations within the most limiting environment in which it is expected to function. Therefore, it is concluded that the tested configurations are suitable for use on Class IE systems within the containment of nuclear power generating stations.

REFERENCES

- 1. IEEE Standard 323-1974, "IEEE Standard for Qualifying IE Equipment for Nuclear Power Generating Stations."
- 2. IEEE Standard 383-1974, "IEEE Standard for Type Test of Class IE Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations."
- 3. USNRC Regulatory Guide 1.89, "Qualification of Class IE Equipment for Nuclear Power Plants."
- 4. USNRC Regulatory Guide 1.131, "Qualification Tests of Electric Cables and Field Splices for Light-Water-Cooled Nuclear Power Plants."
- 5. NUREG-0588, "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment."
- 6. EDR-5046, Raychem Report "Analysis of Heat Aging Data on WCSF Material to Determine Pre-Aging Conditions for Nuclear Qualification Testing."
- 7. ICEA S-61-402, "ICEA/NEMA Standards Publication Thermoplasticinsulated Wire and Cable for the Transmission and Distribution of Electrical Energy."
- 8. NPE-TP-81-03, "Environmental Qualification Test Plan of Raychem Nuclear Cable Splice Assemblies."

TABLE 1 TEST SPECIMEN CONDITIONING SUMMARY

n Aging ³	Rate (rads/hr)	5.7 × 10 ⁵	5.7 × 10 ⁵	5.7 x 10 ⁵	4.7 × 10 ⁵	4.7 x 10 ⁵	4.7 x 10 ⁵	
Radiation Aging ³	Dose (rads)	2.2 x 10 ⁸	2.2 × 10 ⁸	2.2 × 10 ⁸	1.7×10^{8}	1.7×10^{8}	1.7 × 10 ⁸	
	Installed ² Life Equivalent	44.8 yrs	44.8 yrs	44.8 yrs	Day 1	Day 1	Day 1	
Thermal Aging ⁴	Duration	929 hrs.	929 hrs.	929 hrs.	ı	۱	ı	
The	Temperature	150°C (302°F)	150°C (302°F)	150°C (302°F)	Unaged	Unaged	Unaged	
	Raychem I.D. ¹ Number	18	19	20	30	31	32	
	Specimen <u>Number</u>	1.	2.	3.	4.	5.	6.	

- Raychem Specimen Identification are referred to by adjacent Specimen Numbers throughout this report for clarity and ease of understanding. Each Specimen consisted of four conductors labeled as -1, -2, -3, and -4 for each Specimen Number. Notes: (1)
- (2) Installed Life Equivalents are based upon Arrhenius data documented in Raychem Report EDR-5045⁶ for continuous conductor temperature of 90°C (194°F).
- All values listed are air equivalents of gamma radiation from a \mbox{Co}^{60} source.

(3)

(4) The thermal aging utilized exceeded the required aging time to simulate 40-year life for the cable. 58722**-** 6 Page 17

58722-6 Page 18

MEASUREMENTS	
RESISTANCE ¹	
INSULATION RESISTANCE ¹	
ъ	
SUMMARY OF	

TABLE 2

Insulation Resistance ² Post LCCA/HELB (ohms)	1.5 × 10 ⁸ 5.2 × 109 5.2 × 108 5.4 × 108	3.5 × 10 ⁸ 3.5 × 10 ⁸ 2.0 × 10 ⁸ 2.8 × 10 ⁷	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.8 \times 10 ⁹ 1.3 \times 10 ⁹ 5.0 \times 10 ⁹ 9.5 \times 10 ⁹	601 × 8.7 7.4 × 10 9.1 × 10 10 8.3 × 10 8.3 × 10	5.8 × 10 ⁹ 8.3 × 10 6.8 × 10 8.6 × 10 ⁹ 8.6 × 10
Insulation Resistance ² After <u>Conditioning (ohms)</u>	2.2 × 10 ¹¹ 8.0 × 10 ¹⁰ 8.5 × 10 ¹¹ 4.5 × 10 ¹¹ 5.7 × 10 ¹¹	$\begin{array}{c} 4.5 \times 10^{11} \\ 3.0 \times 10^{11} \\ 6.8 \times 10^{11} \\ 6.0 \times 10^{10} \\ 9.0 \times 10^{10} \end{array}$	2.4 × 10 ¹¹ 3.0 × 10 ¹¹ 5.0 × 10 ¹¹ 5.7 × 10 ¹¹	$\begin{array}{c} 3.2 \times 10^{11} \\ 2.2 \times 10^{10} \\ 3.0 \times 10^{11} \\ 3.0 \times 10^{11} \\ 1.4 \times 10^{12} \end{array}$	$\begin{array}{c} 4.0 \times 10^{11} \\ 5.3 \times 10^{10} \\ 5.6 \times 10^{10} \\ 2.6 \times 10^{11} \\ 1.6 \times 10^{11} \end{array}$	1.4 × 10 ¹² 2.0 × 10 ¹² 1.0 × 10 ¹² 1.7 × 10 ¹²
Insulation Resistance ² <u>Before Conditioning (ohms)</u>	7.5 \times 10 ¹² 7.0 \times 10 ¹¹ 1.2 \times 10 ¹³ 1.5 \times 10 ¹³	4.5 × 10 ¹² 7.8 × 1011 8.8 × 1012 5.0 × 1012	$\begin{bmatrix} 1.3 \\ 2.8 \\ 1.2 \\ 1.2 \\ 1.4 \\ 1.4 \\ 1.4 \\ 10^{13} \end{bmatrix}$	$\begin{array}{c} 1.0 \times 10^{14} \\ 1.0 \times 10^{14} \\ 5.0 \times 10^{12} \\ 4.0 \times 10^{11} \end{array}$	2.5 x 10 ¹² 3.0 x 10 ¹³ 4.0 x 10 ¹² 5.0 x 10 ¹²	2.0 × 10 ¹² 1.5 × 10 ¹² 1.8 × 10 ¹² 8.0 × 10 ¹¹
Specimen Number	1-1 1-2 1-3	2-1 2-2 2-3	8 8 8 8 2 - 2 - 4 8 8 8	4 - 1 4 - 2 4 - 4	5555 4322	6-1 6-2 6-3 6-4

58722-6 Page 19

	1 20			;		co_cc	o_a	o_∞_	co	oo_c	മ_യ_	B	°°0	w_ w	Page 1
	637 hours	111 232	28			3.4 × 10	$2.6 \times 10_{\rm R}^{\rm 0}$	2.1 × 108 2.8 × 108	2-6 × 10-	3.5 × 10	4.0 × 10 ⁸ 3.3 × 10	3.5 v 10		3,0 × 10 3,5 × 10 3,5 × 10	ĸ
	546 hours	111 232	28			$2.8 \times 10_{R}^{8}$	2.3 × 10	1.9×10^{8} 2.4 × 10	2.2 × 10.		3.4×10^{8} 2.9×10^{8}	3.0 × 10 ⁸	3.0 × 10.	2.6×10^{8}	or x or tion 3.2.2.
ile	454 hours	111 232	28			3.0 × 108	$2.4 \times 10_{\rm g}^{\rm O}$	$2.0 \times 10^{\circ}_{8}$ $2.5 \times 10^{\circ}_{8}$	2.4 x 10_	×	$3.5 \times 10^{6}_{8}$ 3.4×10^{8}	3.0 × 10 ⁸	×	2.8 × 10 4 0 10 4 0 10	500 volts d-c.
conmental Prof	363 hours	111 232	28	ment (ohms)		$2.3 \times 10_{\rm g}^{\rm g}$	1.8 × 10 8	$1.6 \times 10^{\circ}_{8}$ 2.0 × 10 [°]	2.0×10^{8}	3.0×10^{8}	$3.0 \times 10^{6}_{8}$ 2.8×10^{8}	2.6 × 10 ⁸	3.0 × 10.8	2.4×10^{8}	rgization at e withstand to
of LOCA/MSLB Environmental Profile	272 hours	111 232	28 ³	stance Measurer		$3.0 \times 10_8^8$	$2.1 \times 10^{\circ}_{B}$	$2.2.\times 10_{8}$ $2.2\times 10_{8}$	2+6 × 10 8	×	$4.4 \times 10^{\circ}$ $4.0 \times 10^{\circ}$	3.5×10^{7}	4.0 × 10.8	3.4×10^{8}	minutes of ene
fter Start of	132 hours	138 280	28	Insulation Resistance Measurement (ohms)		$5.0 \times 10^{7}_{7}$	3.4×10^{-7}	2.5×10^{7} 3.7 $\times 10^{7}$	3.0×10^{7}	$3.5 \times 10^{\prime}_{2}$	$5.0 \times 10^{\prime}$ 1.8 × 10 ⁷	3.0×10^{-2}	$5.0 \times 10^{7}_{-2}$	3.0×10^{7}	e made after 5 ance value also
Ellapsed Time After Start	82 hours	1 3 8 280	28	I		×	×	2.8 × 10 ₇ 3.5 × 10 ⁷	ر 10° × 10°	×	6.0 × 107 2.6 × 10	4.0×10^{7}	×	$3.5 \times 10^{\prime}_{7}$	(
	25 hours	149 307	5			$2.6 \times 10_{6}^{7}$	9.0×10^{7}	$1.1 \times 10_7$ 2.2 × 10 ⁷	$3.0 \times 10^{6}_{-3}$	$2.2 \times 10^{\prime}_{7}$	2.8×10^{2} 2.0×10^{2}	2.0×10^{7}	5.0 × 10,	$1.4 \times 10^{\prime}_{7}$	l resistance me listing an ins
	9 hours	160 325	<i>†L</i>			$1.3 \times 10_{6}^{7}$	$7.4 \times 10_{6}$	$6.4 \times 10_7$ 1.3 × 10	1.4 × 10,	$2.5 \times 10^{\prime}$	1.4×10^{7} 1.2×10^{7}	2.0×10^{7}	×	$1.3 \times 10^{\prime}$	All insulation All specimens
		Temperature (<mark>°F</mark>)	Vessel Pressure (psig)		spectanen Number	4-1	4-2	4-3 4-4	5-1	5-2	5-3 5-4	6-1	6-2	6-3 6+4	- :

(pan TABLE 2 (C

Pressure (paro) $\underline{4-1}$ $\underline{4-2}$ $\underline{4-3}$ $\underline{4-4}$ $\underline{5-1}$ $\underline{5-2}$ $\underline{5-3}$ $\underline{5-4}$ $\underline{6-1}$ $\underline{5-4}$ $\underline{5-5}$				Vessel			CULL	Current Measurement	suremen	t	ecimer	ecimen Number (Amperes)	r (Ampe	res)	Ì	
B5 IB5 - 28 25<	-~1	emperatu ('	ure (1)	Pressure (psig)	4-1	4-2	4-3	4-4	5-1	5-2	5-3	5-4	6-1	6-2	6-3	6-4
			185	ı	28	25	25	25	26	26	25	25	27	26	26	26
149 507 51 25 23 22 23 24 23 21 21 22 22 22 23 24 24 24 23 21 21 22 23 24 23 21 21 21 21 23 23 21 <t< td=""><td></td><td></td><td>550</td><td>120</td><td>24</td><td>20</td><td>22</td><td>23</td><td>24</td><td>24</td><td>24</td><td>23</td><td>24</td><td>23</td><td>22</td><td>24</td></t<>			550	120	24	20	22	23	24	24	24	23	24	23	22	24
138 280 28 25 23 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 23 15 138 280 28 23 22 23 23 22 23 24 24 23 24 24 23 24 24 24 24 24 24 24			307	51	25	23	22	24	25	25	24	24	24	25	25	25
138 280 28 25 22 21 22 24 24 22 23 138 280 28 23 22 23 24 24 23 23 111 232 28 23 22 23 24 24 23 23 111 232 28 25 22 23 24 24 23 23 111 232 28 26 26 25 24 25 23 24 24 24 24 25 24 24 25 24 24 24 24 25 24 24 24 25 25 23 24 24 24 24 25 25 25 25 25<			280	28	25	23	22	23	24	24	24	24	24	25	23	23
1)B 280 28 23 22 23 24 25 24 23 23 111 232 28 25 25 24 24 24 24 23 23 111 232 28 26 25 24 25 23 24 24 24 24 25 24 24 25 24 24 25 24 24 24 25 24 24 24 25 24 24 25 24 24 24 25 24 24 25 24 24			280	28	25	22	21	22	24	24	22	23	24	24	23	22
111 232 23 24 24 24 24 23 23 111 232 28 26 25 25 27 27 23 27 111 232 28 26 25 25 25 25 23 27 27 23 27 111 232 28 26 25 26 24 24 24 24 25 24 25 <td></td> <td></td> <td>280</td> <td>28</td> <td>23</td> <td>22</td> <td>22</td> <td>23</td> <td>24</td> <td>25</td> <td>24</td> <td>23</td> <td>25</td> <td>25</td> <td>25</td> <td>25</td>			280	28	23	22	22	23	24	25	24	23	25	25	25	25
111 232 28 26 25 26 27 27 23 21 a 111 232 28 26 25 24 25 26 25 25 25 26 25 25 26 25 26 25 2			232	28	23	22	22	23	24	24	24	23	24	25	24	23
111 232 28 26 25 24 25 24 24 24 25 25 25 24 24 24 25 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 26 25 25 25 25 25 25 25 25 25 25 25 25 <			232	28	26	26	22	26	27	27	23	27	24	27	23	24
111 232 28 26 23 25 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 24 24 24 25 25 24 24 24 25 25 24 24 24 25 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 26 26 26 <			232	28	26	25	24	25	25	25	25	25	24	24	24	23
111 232 28 26 24 23 24 23 23 23 23 23 23 23 23 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 <			232	28	26	23	25	23	25	25	25	25	55	25	25	26
20 days 111 232 28 26 26 25 23 27 26 29 22 days 111 232 28 24 23 23 23 25 25 29 24 24 days 111 232 28 24 23 23 23 25 25 29 24 24 days 111 232 28 23 24 25 23 25 24 25 27 days 111 232 28 24 21 25 23 25 25 25 28 days 111 252 28 27 23 23 26 26 26 26 29 days 111 252 28 27 23 23 24 23 24 29 days 111 252 28 27 23 23 26 26 26 29 days 111 252 28 27 24 23 24 23 24			232	28	26	24	23	24	24	25	24	24	23	26	25	26
22 days 111 232 28 24 23 23 23 25 25 29 24 24 days 111 232 28 23 24 25 24 25 24 days 111 232 28 23 24 25 24 25 27 days 111 232 28 24 21 25 23 25 24 25 28 days 111 252 28 24 21 25 22 25 25 29 days 111 252 28 27 23 23 26 24 29 days 111 252 28 27 24 23 26 26 29 days 111 252 28 27 24 23 24 23 24			232	28	26	26	22	23	27	27	26	23	24	27	23	24
24 days 111 232 28 23 24 25 23 24 25 27 days 111 232 28 24 21 25 22 25 25 25 28 days 111 232 28 24 21 25 22 25 25 25 28 days 111 252 28 27 23 23 26 26 26 29 days 111 252 28 27 23 23 24 24 29 days 111 252 28 27 24 23 24 24			232	28	24	23	23	23	25	25	25	24	24	25	24	24
27 days 111 232 28 24 21 25 22 25 25 25 25 25 25 29 days 111 232 28 27 23 23 22 26 26 24 24 24 24 24 24 24 24 24 24 24 24 24	24 days		232	28	23	24	25	23	23	25	24	25	24	26	25	25
28 days 111 232 28 27 23 22 26 26 26 24 29 days 111 232 28 27 24 23 23 24 24 23 24			232	28	24	21	25	22	22	25	25	25	21	2.5	23	23
29 days 111 232 28 27 24 23 23 24 24 23 24	28 days		232	28	27	23	22	22	26	26	26	24	24	24	27	24
	days		232	28	27	24	23	23	24	24	23	24	22	23	23	22
28 27 24 22 24 22 24 22 24			232	28	27	24	22	24	22	24	22	25	21	23	23	24
After J1 days 111 232 28 24 25 24 25 25 25 25 25 25			232	28	24	25	24	25	26	25	25	25	25	25	27	25

58722-6 Page 20

IABLE 3

58722-6

Page 21

Table 4

Post LOCA/MSLB Inspection Summary

Specimen <u>Number</u>	Results of Inspection
1.	All conductors unable to maintain voltage throughout environmental exposure. Specimen passed VWT* while immersed in water bath with high insulation resistance. Failures due to failed wire insulation. Specimen exhibited no signs of cracking or splitting.
2.	All conductors unable to maintain voltage throughout environmental exposure. Specimen passed VWT* while immersed in water bath with high insulation resistance. Failures due to failed wire insulation. Specimen exhibited no signs of cracking or splitting.
3.	All conductors unable to maintain voltage throughout environmental exposure. Specimen passed VWT* while immersed in water bath with high insulation resistance. Failures due to failed wire insulation. Specimen exhibited no signs of cracking or splitting.
4.	Maintained voltage and current throughout the environmental exposure. No evidence of damage to test specimen or wire insulation.
5.	Maintained voltage and current throughout the environmental exposure. No evidence of damage to test specimen or wire insulation.
6.	Maintained voltage and current throughout the environmental exposure. No evidence of damage to test specimen or wire insulation.

* VWT - Voltage Withstand Test

<u>APPENDIX A</u>

CERTIFICATION OF RADIATION DOSE

58722-6 Page A1

February 18, 1982

Mr. Joe Connolly Ray Chem Corporation 300 Constitution Drive Menlo Park, California 94025

Dear Mr. Connolly:

This will summarize parameters pertinent to the irradiation of two (2) containers of cable splice samples, as per your Purchase Order #A07349. Specimens were identified as follows:

Group I - R-24593- 165 megarad box

Group II - R-24591 - 215 megarad box

The specimens in Group I were exposed to a Cobalt 60 gamma source for a period of 362 hours at a nominal dose rate of 0.47 megarads per hour. The calculated dose based on dosimetry is 170 megarads. Halfway through the exposure, the specimens were rotated 180 degrees to give a more uniform dose distribution.

The specimens in Group II were exposed to a Cobalt 60 gamma source for a period of 386 hours at a nominal dose rate of 0.57 megarads per hour. The calculated dose based on dosimetry is 220 megarads. Halfway through the exposure, the specimens were rotated 180 degrees to give a more uniform dose distribution.

Dosimetry was performed using Harwell Red 4034 Perspex dosimeters, utilizing a Bausch and Lomb Model 710 spectrophotometer as the readout instrument. This system is calibrated directly with NBS, with the last readout calibration being September 08, 1981. A copy of the dosimetry correlation report is available upon request.

Irradiation was conducted in air at ambient temperature and pressure. Radiant heat from the source heated the specimens somewhat, but the temperature did not exceed 130 degrees F, as indicated by previous measurements on an oil solution in the same relative position.

Isomedix Inc. • 25 Eastmans Road, Parsippany, New Jersey 07054 • (201) 887-2666

58722-6 Page A2

Mr. Joe Connolly

.

Irradiation for Group I was initiated on December 31, 1981, and was completed on January 20, 1982.

Irradiation for Group II was initiated on December 31, 1981 and was completed on January 22, 1982.

Very truly yours,

ISOMEDIX, INC.

David P. Constantine

David P. Constantine Production Manager

DC/mjb

Isomedix Inc. • 25 Eastmans Road, Parsippany, New Jersey 07054 • (201) 887-2666

<u>APPENDIX B</u>

LIST OF DATA ACQUISITION INSTRUMENTS

	SPECI	SPECIMEN <u>CAB</u> CUSTOMER <u>RAY</u>	CABLE SPLICE ASSEMBLIES RAYCHEM	ES	JOB NO. DATE). <u>58722</u> 1-25-82	
	PART NO. S/N		SEE REC. INSP. SEE REC. INSP.		TEST BY WITNESS		
WYLE LABORATORIE	ts TEST:	LOCA	A		I		
EQUIPMENT	MANUFACTURER	MODEL NO.	RANGE	WYLE NO.	CALIBR	CALIBRATION	ACCY
MOM	BECKMAN	330	VARIOUS	892	5-4-81	5-2-82	DATA
RECORDER	KAYE	DR-28	VARIOUS	8750	1-28-82	8-1-82	± 0.05%
DIGITAL THERMOMETER	FLUKE	2160A	-350°F to +752°F	8401	12-7-81	6-13-82	± 2.0°F
DIGITAL THERMOMETER	FLUKE	2160A	-350°F to +752°F	8290	1-26-82	5-30-82	
DIGITAL THERMOMETER	FLUKE	2160A	-350°F to +752°F	8032	12-29-81	5-2-82	+ 2 0°F
A/C D/C HYPOT	ASSOCIATED RESEARCH	4045	0-5K_VOLTS	5606	12-11-81	6-13-82	
RECORDER	HEWLETT PACKARD	7132A	1-500 mV	8674	SYSTEM	5	
RECORDER	PACKARD	7132A	1-500 mV	8 67 2	SYSTEM		
MOM	BECKMAN	330	VARIOUS	8893	7-1-81	7-4-82	DATA
GAUGE	ASHCROFT	7320	0-100 ps i	4435	1-22-82	4-25-82	I
X-DUCER	VALIDYNE	DP-15	0+100 psi	19937	2-2-82	8-1-82	± 1%
X-DUCER	VAL IDYNE	<u>DP-15</u>	0-100 ps i	32738	2-2-82	8-1-82	+ 1%
MEGOHMMETER	RADIO.	1864	0-5. x 10 ¹³ a	199838	12-16-81	6-16-82	± 5%
FLOW GAUGE DIGITAI	BARTON	D4-49053-1	0-80" H ₂ 0	7784	1-11-82	7-18-82	± 0.5%
T/C METER	ELECT	DIGIMITE	0-400*F	7890	2-2-82	6-6-82	LABEL
MMG	BECKMAN	330	0-50 VDC 0-150 ACA	8892	5-4-81	5-2-82	DATA
CURRENT CLAMP	BECKMAN	CT-231	0-150 ACA	9065	10-7-81	7-4-82	1 ABEL
W614D Q.A. Approval ALA	Where applicable, the listed test equi- to the National Bureau of Standards. the Myle Laboratories (A files and are	the listed test reau of Standard ies QA files and	Where applicable, the listed test equipment has been calibrated using standards which are traceable to the National Bureau of Standards. Certificates and reports of all calibrations are retained in the Myle Laboratories (A files and are evailable for inspection upon request.	rated using s miss of all c tion upon re	ipment has been calibrated using standards which are traceable Certificates and reports of all calibrations are retained in a available for inspection upon request.	aceable SHEET	1 of 2

· ·

58722-6 Page B1

LE LABORATORIES							
WYLE LABORATORIES	PART NO. S/N		SEE REC. INSP. SEE REC. INSP.			BY 6. ADAIR ESS	
	TEST: _	LOCA			I		
EQUIPMENT M/	MANUFACTURER	MODEL NO.	RANGE	WYLE No	CALIB	CALIBRATION DUE	ACCY.
GAILGE	ASHCROFI	1322	0-200 PSI	30190	2-24-82	5-30-82	PULL SCALE
HIGHDOT	ASSOCIATED Research	4030	0=5kV A.C.	L30106	12-31-81	6-31-82	± 0,1%
RECORDER	HONEYWELL	154201212 6927	0-500 mV	L30107	10-15-81	4-15-82	+ 1%
			 		t 		
							5
110 mm	Libera Arris (rable.	the listed test	Where anniticable, the listed test equinment has been calibrated using standards which are traceable	librated using	standards which are	SHEFT	, 0F

0 5 for the Wvle Jaboratories (A files and are available

. . .

58722-6 Page B2