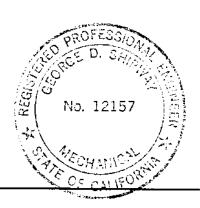
TEST REPORT

WYLE LABORATORIES


SCIENTIFIC SERVICES & SYSTEMS GROUP WESTERN OPERATIONS, NORCO FACILITY

RAYCHEM CORPORATION
300 Constitution Drive
Menlo Park, California 92024

27 - Page Report

DATE 18 November 1982

ENVIRONMENTAL QUALIFICATION TEST REPORT OF RAYCHEM WCSF-N IN-LINE BOLTED SPLICE ASSEMBLIES FOR RAYCHEM CORPORATION

STATE OF C.	L
COUNTY OF	R. C. Myrick
deposes and s complete and and correct in	ays: That the information contained in this report is the result of carefully conducted tests and is to the best of his knowledge true all respects.
SUBSCRIBED	appd sworn to before me this day of November . 19 82
1	eren Hally
4 y Public	in and for the Lounty of Riverside, State of California
	Mx Commission - color - 14 July 19 83
	OFFICIAL SEAL CATHERINE C KELTY NOTARY PUBLIC - CALIFORNIA
W-867A	RIVERSIDE COUNTY My comm. expires JUL 14, 1983

DEPARTMENT DYNAMICS
DEPT. MGR. J. J. Anderson
TEST ENGINEER L. F. Goad
REGISTERED PROFESSIONAL Soll ve
ENGINEER /
DCAS—QAR VERIFICATION,
QUALITY ASSURANCE HEESEMAN
L. Housteau

TABLE OF CONTENTS

Section	Title	Page
1.0	SUMMARY	1
2.0	TEST SPECIMEN	2
	2.1 Materials and Construction	2
3.0	TEST PROGRAM	4
	3.1 Test Sequence3.2 Functional Test Procedures3.3 Specimen Preconditioning3.4 LOCA/MSLB Environmental Exposure	4 5 5 7
4.0	TEST RESULTS	11
	4.1 Functional Test Results4.2 LOCA/MSLB Environment Exposure4.3 Post LOCA/MSLB Inspection	11 11 12
5.0	CONCLUSIONS	13
	TABLES	
	APPENDICES	

FIGURES

<u>Title</u>	<u>Page</u>
Figure 1 - Single Shim Specimen Construction Figure 2 - Double Shim Specimen Construction Figure 3 - Specimen Installation Figure 4 - Energizing Circuit Schematic Figure 5 - Diagram of LOCA/MSLB Pressure Vessel and Auxiliary Equipment	3 4 7 8 9
Figure 6 - Temperature and Pressure Profiles for Simulation of LOCA/MSLB Environment	10
<u>TABLES</u>	
Table 1 - Test Specimen Conditioning Summary Table 2 - Summary of Insulation Resistance Measurements Table 3 - Current Monitoring of Test Specimen Table 4 - Post LOCA/MSLB Inspection Summary	16 17,18 19 20
<u>APPENDICES</u>	
Appendix A - Certificate of Radiation Dose Appendix B - List of Data Acquisition Instruments	A1 B1

1.0 **SUMMARY**

Twelve specimens of Raychem WCSF-N In-Line Bolted Splice Assemblies were subjected to an environmental qualification type test to demonstrate their capability to maintain functional operability under all service conditions postulated to occur within the containment of nuclear generating stations during the installed life of the product. The qualification program was based upon the methods, procedures and guidelines set forth in IEEE Standards 323-1974¹ and 383-1974² as endorsed by USNRC Regulatory Guides 1.89³ and 1.131⁴ respectively.

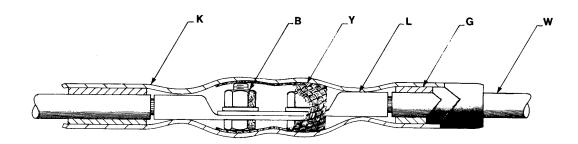
The test specimens were exposed to a single environmental profile encompassing temperatures up to 228°C (442°F) that enveloped the conditions produced by main steamline break and loss-of-coolant accidents (MSLB/LOCA), in accordance with the simulated environmental profile preferred by NUREG-0588⁵ for qualifying equipment located inside containment. A caustic solution was sprayed on the test specimens throughout the environmental exposure to simulate conditions that would occur when containment spray systems actuate. Extremes in power supply voltage ranges were simulated by energizing the test specimens at the maximum allowable ampacity of the No. 4 AWG insulated conductors and at full rated voltage (1000V a-c).

The effects of installed life were simulated by the accelerated aging of six test specimens to an equivalent service life in excess of 44 years at 90°C (194°F). Accelerated aging was accomplished via thermal exposure at a rate based upon the Arrhenius data documented in Raychem Report EDR-5046. These specimens were then exposed to gamma radiation at a level to include both the postulated LOCA accident dose and a dose equivalent to an installed assembly containment exposure

integrated over a 40-year period. The remaining six specimens received only the postulated accident radiation dose to simulate beginning of life LOCA/MSLB exposure. The thermally aged and the unaged specimens received in excess of 2.15 x 10⁸ rads gamma and 1.65 x 10⁸ rads gamma respectively.

Acceptance criterion was established as the specimen's ability to maintain rated voltage and current during and after the environmental exposure. Margin was demonstrated by the specimen's ability to pass voltage withstand testing at 80 volts per mil based on the wire insulation thickness.

Based upon the satisfactory performance of the specimens during this test program, it was concluded that the Raychem WCSF-N In-Line Bolted Splice Assembly is suitable for use inside the containment of nuclear power generating stations.


The LOCA/MSLB environmental exposure was performed by Wyle Laboratories, Norco, California. Thermal preconditioning of samples was performed at Raychem Corporation, Menlo Park, California. Radiation sample preconditioning was performed at Isomedix Inc., Parsippany, New Jersey.

2.0 TEST SPECIMEN

2.1 Materials and Construction

2.1.1 Each test specimen was constructed of Raychem's nuclear grade extrusion materials and EPPA 109 sleeving taken from standard production. All components conformed to the applicable Raychem Specification Component Drawings referenced in Figures 1 and 2.

- 2.1.2 All test specimens were assembled by Raychem personnel in the configurations shown in Figures 1 and 2, using Raychem's standard cable preparation and splice assembly procedures. The cables were cleaned with 1,1,1 Trichloroethane prior to splice assembly and the components were installed using a Raychem FH-2609, LPG portable flame heater. Specimen Numbers 1 through 6 were the Single Shim Constructions assembled as shown in Figure 1. Specimen Numbers 7 through 12 were the Double Shim Constructions shown in Figure 2.
- 2.1.3 In addition to these twelve specimens, several other types of products were tested in this program. The other constructions are the subject of separate reports. For clarity of data presentation, the twelve constructions reported herein are referenced as specimen numbers 1 through 12. These specimen numbers are cross-referenced with actual Raychem specimen identification numbers in Table 1.

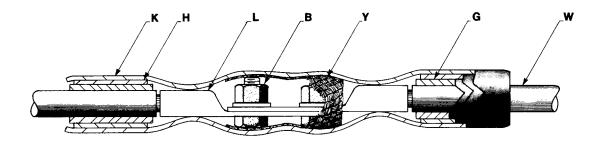

			Specification Component
<u>Key</u>	<u>Component</u>	<u>Description</u>	Drawing
K	WCSF-500-12-N	Outer Sealing Sleeve	SCD-37001
Υ	EPPA-109-1	Bolt Pad	SCD-10017
G	WCSF-300-3-N	Cable Jacket Shim	SCD-37001
В	Bolt	1/2" L x 1/2" Dia.`	N/A
L	2-hole terminal	4 inches long	N/A
W	1/C-#4 AWG Wire	Rockbestos XLPE	N/A
		0.045" Insulation thickness	

Figure 1. Single Shim Specimen Construction

Applicable Raychem

Page 4

Applicable Raychem

			Specification Component
<u>Key</u>	Component	<u>Description</u>	Drawing
Υ	EPPA-109	Bolt Pad	SCD- 10017
K	WCSF-650-12-N	Outer Sealing Sleeve	SCD-37001
Н	WCSF-300-3-N	Cable Jacket Shim	SCD-37001
G	WCSF-500-2.3-N	Cable Jacket Shim	SCD-37001
В	Bolt	1/2" L x 1/2" Dia.	N/A
L	2-hole terminal	4 inches long	N/A
W	1/C-#Y4 AWG Wire	Rockbestos XLPE 0.045" Insulation thickness	N/A

Figure 2. Double Shim Specimen Construction

3.0 <u>TEST PROGRAM</u>

3.1 <u>Test Sequence</u>

In conformance with section 6.3.2 of IEEE Standard 323-1974, test specimens were neither modified nor altered after assembly and each specimen was used throughout the entire test sequence. The test sequence comprising this qualification type test is listed below:

<u>Sequence</u>	Test Description
1.	Functional Tests
2.	Specimen Preconditioning
3.	Functional Tests
4.	LOCA/MSLB Environmental Exposure
5.	Functional Tests

3.2 <u>Functional Test Procedures</u>

Functional tests were repeated three times during the test program as shown in Section 3.1. Prior to the performance of each functional testing cycle, all test specimens were immersed in tap water at room temperature for a minimum of 16 hours. Each splice assembly being tested was submerged 12 or more inches below the water's surface during the 16 hour soak. All functional tests were performed with the specimens immersed in the water bath. Test values are summarized in Table 2. Equipment calibration data is provided in Appendix B.

3.2.1 <u>Insulation Resistance (I.R.)</u>

After the 16 hour immersion, while still in the water bath, the I.R. of each specimen was measured. Measurements were made at 500 volts d-c after one minute of electrification. The water bath was used as the ground plane during this test.

3.2.2 <u>Voltage Withstand</u>

After the I.R. of each specimen was measured and while still in the water bath, a 3600 volt a-c voltage withstand test was performed on each test specimen in accordance with ICEA S-61-402, 6.11.2⁷. Using the water bath as ground, the voltage was applied to the conductor in each specimen.

3.3 Specimen Preconditioning

3.3.1 Thermal Aging

Six specimens were thermally aged to simulate a service condition of over 40 years based on Arrhenius data for Raychem's nuclear grade materials as documented in

Raychem report EDR-5046°. These samples were aged to an equivalent of 44.2 years installed life at 90°C (194°F). The remaining six specimens were not thermally aged, simulating the product at the beginning of installed life. All thermal aging was accomplished at Raychem Corporation. Specimens were placed horizontally in a Blue M circulating air oven throughout the aging period. Table 1 presents the aging time and the temperature used during specimen conditioning.

3.3.2 Radiation Aging

The radiation dose determined to represent the gamma exposure to installed assemblies within containment over a 40 year period was 5.0×10^7 rads. The postulated accident gamma radiation dose was 1.5×10^8 rads.

Thermally aged specimens were exposed both to the postulated accident dose, plus 10 percent margin, and the dose representing 40 years of installed life totaling 2.15×10^8 rads gamma. The samples simulating the beginning of installed life received only the postulated accident dose plus 10 percent margin for a total dose of 1.65×10^8 rads gamma.

The actual gamma radiation exposures exceeded the required 2.15 x 10⁸ rad and 1.65 x 10⁸ rad levels. Table 1 depicts the actual air equivalent radiation doses and associated dose rates by specimen number. The radiation source utilized was Co⁶⁰ and the Certificate of Radiation is shown in Appendix A.

3.3.3 Functional Tests

The functional tests were again performed after specimen preconditioning as described in Section 3.2. Test values are listed in Table 2.

3.4 LOCA/FISLB Environmental Exposure

The test specimens were placed horizontally on perforated metal trays inside a pressure vessel. Extension leads were spliced to the test specimens inside the pressure vessel and insulated with Raychem WCSF-N tubing. The extension leads were brought out of the test vessel through penetrations installed in the pressure vessel wall to allow for electrical connection and monitoring. Figure 3 shows the installation of test specimens in the pressure vessel.

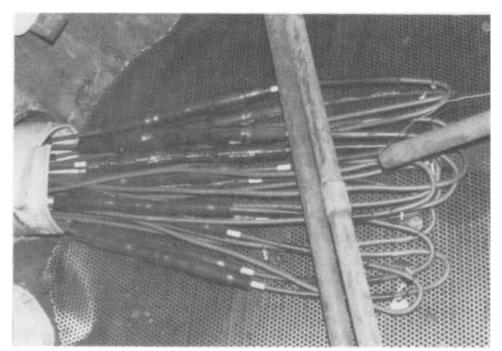


Figure 3. Specimen Installation

The specimens were energized at 1.0 kV a-c to ground and carried a current of 90 amperes. Current values were sampled throughout the test and are presented in Table 3. The voltage energization circuit for each test specimen was separately fused at 1/4 amp. A schematic of the energizing circuit is given in Figure 4.

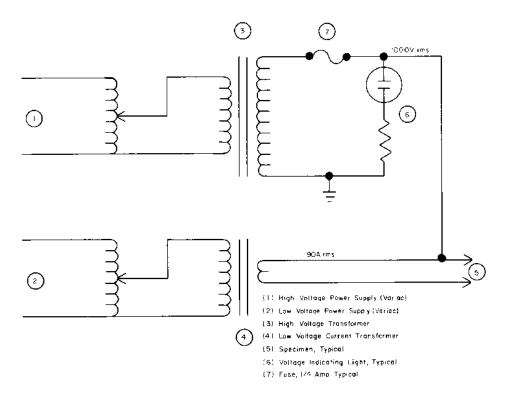
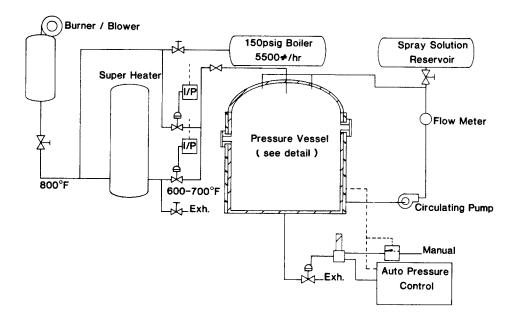
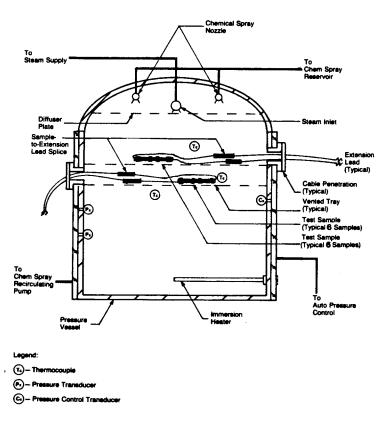
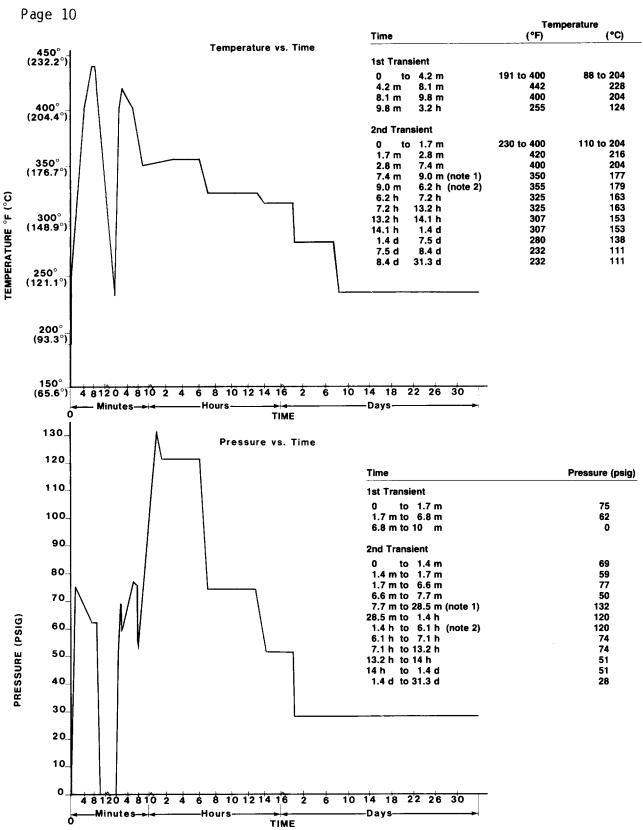




Figure 4. Energizing Circuit Schematic

A chemical spray solution consisting of 0.28 molar H_3BO_3 (3000 ppm boron), 0.064 molar $Na_2S_2O_3$, buffered with NaOH to a pH of 10.5 at 25°C (77°F) was provided in a separate reservoir. This solution was sprayed through two nozzles from the top of the vessel at a rate in excess of 0.15 gpm/ft² beginning immediately after the second temperature transient and ending upon completion of the 30-day environmental exposure (actual flow was 34 gpm). A diagram of the pressure vessel is given in Figure 5. The temperatures, pressures, and spray duration throughout the test period are given in Figure 6.



Auxiliary Equipment

Pressure Vessel Detail

Figure 5. LOCA/MSLB Pressure Vessel and Auxiliary Equipment

NOTES: (1) Problems encountered with test vessel pressure seals necessitated interrupting the test after 9.0 minutes. Test was resumed at the 177°C (350°F) temperature plateau and the chemical spray was initiated.

Figure 6. Temperature and Pressure Profiles for Simulation of LOCA/MSLB Environment

⁽²⁾ Problems encountered with the test specimen extension leads and the test vessel pressure seals necessitated interrupting the test after 5 hours. The test was resumed at the 177°C (350°F) temperature plateau to complete the required exposure at this temperature level.

4.0 TEST RESULTS

4.1 Functional Test Results

The results of all voltage withstand tests and insulation resistance measurements are listed in Table 2. Test specimen current loading values during the environmental exposure are presented in Table 3. All specimens passed voltage withstand tests and measured good insulation resistance throughout the test sequence specified in Section 3.1. Two test specimens (Nos. 2 and 7) were unable to pass post-environmental exposure functional tests while installed in the test vessel. These specimens passed functional tests after removal from the test vessel and exclusion of faulty extension leads from test.

4.2 LOCA/MSLB Environment Exposure

The following details of the profile depicted in Figure 6 are noted:

a. The temperature of 204°C (400°F) was not reached in 10 seconds as proposed in Raychem Test Plan No. NPE-TP-81-03⁸. Attainable rise times were governed by the apparatus selected to encompass the entire scope of the Raychem test plan and precluded meeting the proposed temperature rise time.

However, during the temperature transients, both the peak temperatures and temperature durations exceeded those proposed.

b. Problems encountered with test vessel pressure seals and the test specimen extension leads necessitated interrupting the test after the second temperature transient and again after five hours of specimen exposure at the 177°C (350°F) temperature

plateau. During the interruption at the 177°C (350°F) plateau, the specimens were visually inspected. All specimens appeared to be in good condition. Replacement of the vessel penetration seals was required at this point which necessitated replacement of test specimen extension leads. The specimens themselves were not modified or changed in any way. The test was resumed at the 177°C (350°F) temperature plateau to complete the required specimen exposure at this level.

c. The test specimens were exposed to the LOCA/MSLB environment for 31.3 days rather than the 30 days proposed in Raychem Test Plan No. NPE-TP-81-03⁸.

4.3 Post LOCA/MSLB Inspection

At the conclusion of the environmental exposure, the test vessel was flooded with tap water. The test specimens were then given a voltage withstand test and the insulation resistances were measured. Test values are listed in Table 2. The vessel was then opened and the cause for the two test circuits being unable to hold rated voltage throughout the environmental exposure investigated.

At this point, specimen extension wires were severed inside the vessel and the specimens were removed for examination. The specimens unable to pass voltage withstand testing were retested in a water bath and again insulation resistance measurements were made.

Specimens Nos. 2 and 7 did not hold rated voltage throughout the environmental exposure nor did they pass the voltage withstand test while immersed inside the test.

vessel. With the extension leads excluded from test, these specimens passed 3600 volt a-c withstand testing in the water bath and also measured good insulation resistance. Visual inspection of all specimens showed no cracking or splitting of the sleeving material. A summary of these findings is presented in Table 4.

5.0 CONCLUSIONS

Twelve specimens of Raychem WCSF-N In-Line Bolted Splice Assemblies were subjected to an environmental qualification type test program designed to simulate the service conditions produced by main steamline break and loss-of-coolant accidents (MSLB/LOCA). The test specimens were exposed to the LOCA/MSLB environmental extremes of temperature, humidity, pressure and chemical spray while energized at cable maximum rated current and voltage. These test specimens were conditioned to simulate both the beginning of installed life and over 40 years of installed life. They were exposed to LOCA/MSLB levels of radiation to include both accident dose margin and the postulated containment radiation dose integrated over 40 years of installed life.

This Raychem splice configuration demonstrated the ability to insulate and seal bolted connections when subjected to LOCA/MSLB environmental conditions. All specimens had the ability to maintain rated voltage and current throughout the environmental exposure and demonstrated satisfactory electrical performance at the conclusion of the test program. Although specimens Nos. 2 and 7 did not hold voltage throughout the

environmental exposure, retest at the conclusion of the exposure demonstrated the electrical integrity of the specimens. Visual examination substantiated the physical integrity of all specimens. It was concluded that all specimens demonstrated the ability to maintain electrical integrity throughout the test program. The two samples did not maintain rated voltage during the exposure due to damaged extension leads. All specimens demonstrated performance margin at the conclusion of the test by passing voltage withstand testing.

The results of this comprehensive test program provide reasonable assurance, by type test, that the Raychem bolted splice configuration can perform its intended function of insulating and sealing in the most limiting environment in which it is expected to function. Therefore, it is concluded that the WCSF-N In-Line Bolted Splice Assembly is suitable for use on Class IE systems within the containment of nuclear power generating stations.

REFERENCES

- 1. IEEE Standard 323-1974, "IEEE Standard for Qualifying IE Equipment for Nuclear Power Generating Stations".
- IEEE Standard 383-1974, "IEEE Standard for Type Test of Class IE Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations".
- 3. USNRC Regulatory Guide 1.89, "Qualification of Class IE Equipment for Nuclear Power Plants".
- 4. USNRC Regulatory Guide 1.131, "Qualification Tests of Electric Cables and Field Splices for Light-Water-Cooled Nuclear Power Plants".
- 5. NUREG-0588, "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment".
- 6. EDR-5046, Raychem Report "Analysis of Heat Aging Data on WCSF Material to Determine Pre-Aging Conditions for Nuclear Qualification Testing".
- 7. ICEA S-61-402, "ICEA/NEMA Standards Publication Thermoplastic-insulated Wire and Cable for the Transmission and Distribution of Electrical Energy".
- 8. NPE-TP-81-03, "Environmental Qualification Test Plan of Raychem Nuclear Cable Splice Assemblies".

TABLE 1

TEST SPECIMEN CONDITIONING SUMMARY

			5 Thermal Aging		Radia	4 Radiation Aging
1 Specimen	Raychem 1.D.			3 Installed		
Number	Number	Temperature	Dural ion	Life Equivalent	Dose (rads)	Rate (rads/hr)
-	-	150°C (302°F)	916.75 hrs.	44.2 yrs	2.2 × 10	5.7 × 10 5
2.	3	150°C (302°F)	916.75 hrs.	44.2 yrs	2.2×10^{8}	5.7×10^{3}
3.	7	150°C (302°F)	916.75 hrs.	44.2 yrs	2.2 × 10 s	5.7×10^{3}
4.	101	Unaged	1	Day 1	1.7 × 10	4.7 × 10 5
۲.	102	Unaged	1	Day 1	1.7 × 10 g	4.7 × 10 3
.9	100	Unaged	1	Day ↑	1.7 × 10°	4.7 × 10 5
7.	9a	150°C (302°F)	916.75 hrs.	44.2 yrs	2.2×10	5.7 x 10 3
8	ያ	150°C (302°F)	916.75 hrs.	44.2 yrs	2.2 × 10	5.7 × 10 s
.6	50	150°C (302°F)	916.75 hrs.	44.2 yrs	2.2 × 10	5.7 × 10 s
.01	104	Unaged	1	Day 1	1.7 × 10°	4.7 × 10
Ξ.	105	Unaged	1	Day 1	1.7 × 10	4.7 × 10 5
12.	106	Unaged	1	Day 1	1.7 × 10	4.7 × 10

Specimen Numbers 1 through 6 consist of the Single Shim Constructions depicted in Figure 1 of this report. Specimen Numbers 7 through 12 consist of the Double Shim Constructions depicted in Figure 2 of this report. Figure 2 of this report. Sample Numbers are referred to by adjacent Sample Numbers throughout this report in Identification Numbers are referred to by adjacent Sample Numbers throughout this replication and ease of comprehension. Installed Life Equivalents are based upon Arrhenius data documented in Raychem Report EDR-5046 for continuous conductor temperature of $90^{\circ}\mathrm{C}$ ($194^{\circ}\mathrm{F}$). All Radiation Aging values listed are air equivalents of gamma radiation from a $\mathrm{Eo}60$ source. The 916.75 hour Thermal Aging exceeded the required aging time to simulate 40-year Life for the cable. Ξ Not es:

(5)

(3)

(4)

IABLE 2

SUMMARY OF INSULATION RESISTANCE MEASUREMENTS

				lest Sam	ple Insulati	lest Sample Insulation Resistance (ohms)	e (ohms)	
Test Candilions	Temperature (°C) (°F)	Vessel Pressure (psig)	-	2.	3.	4.	<u>.</u>	•
Baseline (Note 1)	Ambient	1	1.7 × 10 ¹²	6.0 × 1012	3.0 × 10 ¹²	1.2×10^{12}	1.2×10^{12}	1.0 × 10 ¹²
After conditioning	Amblent	ı	5.0×10^{11}	5.2×10^{11}	5.0×10^{11}	4.5 x 1011	4.5 x 10 ¹¹	4.5 x 1011
During LOCA/MSLB Exposure								
After 3 hours (Note 2)	177 350	120	1	Note 3	1	1	1	1
After 9 hours	163 325	74	6.8 × 10 ⁶	1	6.4 × 10 ⁶	3.5 x 106	3.8 x 106	4.0 × 10 ⁶
Afler 23 hours	153 307	51	1.3×10^{7}	1	1.3 x 107	8.6 x 106	7.8 × 10 ⁶	8.2 x 106
After 82 hours	138 280	28	3.3×10^{7}	1	3.2×10^{7}	1.7×10^{7}	1.9×10^{7}	2.0×10^{7}
After 132 hours	138 280	28	3.0 × 107	ı	3.0×10^{7}	2.2×10^{7}	7.9 x 107	2.0×10^{7}
After 272 hours	111 232	28 (Not.e 4)	9.0 × 107	1	1.2 × 108	1.0 x 108	8.4×10^{7}	1.1×10^{8}
After 363 hours	111 232	28	8.0×10^{7}	1	9.6 × 107	7.8 x 10B	6.4×107	8.3×107
After 454 hours	1111 232	28	1.0 × 108	1	1.1 × 108	9.0 × 107	8.0×10^{7}	9.7×10^{7}
After 546 hours	1111 232	28	8.2×10^{7}	ŀ	1.1 × 108	0.2×10^7	7.8 × 107	9.7 x 107
After 637 hours	111 232	28	9.4 × 107	•	1.2 x 108	1.0×10^{8}	1.0×10^{9}	1.0 × 108
fest vessel filled with water (Note 1)	Ambient.	,	1.6 × 106	ı	1.8 × 10 ¹⁰	1.9 × 10 ¹⁰	1.8 × 10 ¹⁰	3.5 x 107
Samples 2 and 7 removed from vessel and refested (Note 1)	Amblent.	ı	ž	1.0 × 10 ⁷	¥.	Ā	NA	Ā

(smdo)	
Resistance	
e insulation	
Sample	
Test	

lest Conditions	<pre>Jemperature (°C) (°F)</pre>	Vessel Pressure (ps.g)	7.	8.	9.	10;	=	12.
Baseline (Note 1)	Amb Lent.	1	3.5 x 1012	3.5 × 1012	6.2 x 10 ¹²	1.5 x 10 ¹²	1.0×10^{12}	1.1 × 10 ¹²
After conditioning	Ambrent	ı	5.0×10^{11}	5.0×10^{11}	5.2×10^{11}	5.0×10^{11}	4.0 × 10 ¹¹	5.0 x 10 ¹¹
During LOCA/MSL8 Exposure								
After 3 hours (Note 2)	177 350	120	I	1	ı	,		1
After 9 hours	163 325	74	6.4 × 106	6.1 x 106	5.5 x 106	3.5 x 106	3.4 × 106	3.4 × 106
Afler 23 hours	153 307	51	Note 3	1.3 × 107	1.1 x 107	90t × 8.9	7.0 × 106	6.8 x 106
After 82 hours	138 280	28	ı	3.0×10^{7}	2.8 × 107	1.7 x 107	1.7 x 107	1.7 × 107
After 132 hours	138 280	28	1	2.8×10^{7}	2.7×10^{7}	1.7 × 107	1.7 x 107	1.7 × 107
After 272 hours	111 232	28 (Note 4)	ı	1.1×10^{7}	5.0 × 106	7.8×10^{7}	8.2×10^{7}	8.4×10^{7}
After 363 hours	111 232	28	1	8.6 × 107	3.2×10^{6}	5.9×10^{7}	6.7×10^{7}	6.2×10^{7}
After 454 hours	111 232	28	1	1.0×10^{8}	2.4 x 106	7.6×10^{7}	8.8×10^{7}	7.4 × 107
After 546 hours	111 232	28	ı	1.1×10^{8}	6.0 × 106	6.5×10^{7}	7.8×10^{7}	6.6 x 107
After 637 hours	1111 232	28	1	1.4×10^{8}	1.5 × 107	7.7 × 107	9.5 × 10 ⁷	7.7 × 107
<pre>fest vessel filled with water (Note 1)</pre>	Ambient	ı	ı	1.2 × 10 ⁹	1,4 × 106	2.4 × 10 ⁸	1.6 × 10 ¹⁰	1.4 × 10 ¹⁰
Samples 2 and 7 removed from vessel and refested (Note 1)	Amblent.	ı	2.5 × 109	¥ Z	A A	A A	Ā	N A

Not es:

All specimens listing an insulation resistance value also passed 3600 Vrms voltage withstand lesting per Section 3.2.2.

Due to the necessity of interrupting the test during this temperature plateau [ref. Section 4.2(b)], meaningful lisulation Resistance could not be measured.

Subsequent test demonstrated specimen's ability to pass voltage withstand at 3600 Vrms and exhibit good linsulation Resistance.

Insulation Resistance. (5)

3

CURRENT MONITORING OF TEST SAMPLES DURING LOCA/MSLB ENVIRONMENTAL EXPOSURE TABLE 3

·		Vessel						Samp	Sample Numbers	ers				
ber	(°C) (°F)	Pressure (psig)		2.	~ -	4	5	6.	7.	8	9.	10	=	12.
84	183	1	88	42	98	83	98	8	16	90	88	88	87	85
17.7	350	120	<i>L</i> 9	(2)	70	72	82	9/	(2)	9/	62	83	80	82
153	307	51	99		89	5	78	74		74	76	06	7.7	4
138	280	28	69		89	02	93	74		78	77	82	80	81
138	280	28	73		73	72	82	3/2		7.7	80	84	82	94
138	280	28	7.1		11	11	90	76		11	08	83	80	83
=	232	28(3)	70		72	70	79	7.5		76	181	3 5	81	85
11	232	28	99		69	11	80	75		82	78	88	82	82
Ξ	232	28	98		19	72	82	75		11	78	80	81	83
=	232	28	72		72	7.7	85	80		181	62	83	94	83
11	232	28	72		72	75	₹	79		80	67	83	82	18
111	232	28	69		69	11	90	75		82	78	84	83	81
Ξ	232	28	70		19	11	80	76		90	6	80	81	18
111	232	28	72		99	9/	78	74		90	81	76	90	81
111	232	28	7.3		19	11	85	75		81	78	81	18	84
111	232	28	75		69	11	83	7.7		82	80	82	42	98
Ξ	232	28	7/4		69	78	98	76		82	6/	81	62	85
1	232	28	75		89	78	98	92		82	90	82	79	98
111	232	28	7.3		20	11	80	74		83	1.1	81	75	84

Pre-LOCA/MSLB current measurement was made during vessel preheat. Current supply was terminated when the $^1/_4$ amp fuse in the voltage circuit opened. Fest vessel was externally pressurized with air to maintain a minimum pressure of 28 psig. 333 Not es:

TABLE 4

POST LOCA/MSLB INSPECTION SUMMARY

	exposure.	bath and	exposure.	exposure.	exposure,	exposure.	bath and	exposure.	exposure.	exposure.	exposure.	exposure.
Results of Inspection	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	No visible damage to test sample. Passed VWT* in water measured good insulation resistance.	Maintained voltage and current throughout environmental exposure. No visible damage to test sample or wire insulation.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	No visible damage to test sample. Passed VWT* in water measured good insulation resistance.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.	Maintained voltage and current throughout environmental No visible damage to test sample or wire insulation.
Duration of Sample Energization	31 days	<9 hours	31 days	31 days	31 days	31 days	<9 hours	31 days	31 days	31 days	31 days	31 days
Specimen Number	1.	. 23	ë.	4.	5.	6.	7.	∞,	.6	10.	11.	12.

*VWT - Voltage Withstand Test

APPENDIX A CERTIFICATION OF RADIATION DOSE

February 18, 1982

Mr. Joe Connolly
Ray Chem Corporation
300 Constitution Drive
Menlo Park, California 94025

Dear Mr. Connolly:

This will summarize parameters pertinent to the irradiation of two (2) containers of cable splice samples, as per your Purchase Order #A07349. Specimens were identified as follows:

Group I - R-24593- 165 megarad box

Group II - R-24591 - 215 megarad box

The specimens in Group I were exposed to a Cobalt 60 gamma source for a period of 362 hours at a nominal dose rate of 0.47 megarads per hour. The calculated dose based on dosimetry is 170 megarads. Halfway through the exposure, the specimens were rotated 180 degrees to give a more uniform dose distribution.

The specimens in Group II were exposed to a Cobalt 60 gamma source for a period of 386 hours at a nominal dose rate of 0.57 megarads per hour. The calculated dose based on dosimetry is 220 megarads. Halfway through the exposure, the specimens were rotated 180 degrees to give a more uniform dose distribution.

Dosimetry was performed using Harwell Red 4034 Perspex dosimeters, utilizing a Bausch and Lomb Model 710 spectrophotometer as the readout instrument. This system is calibrated directly with NBS, with the last readout calibration being September 08, 1981. A copy of the dosimetry correlation report is available upon request.

Irradiation was conducted in air at ambient temperature and pressure. Radiant heat from the source heated the specimens somewhat, but the temperature did not exceed 130 degrees F, as indicated by previous measurements on an oil solution in the same relative position.

Mr. Joe Connolly

-2-

February 18, 1982

Irradiation for Group I was initiated on December 31, 1981, and was completed on January 20, 1982.

Irradiation for Group II was initiated on December 31, 1981 and was completed on January 22, 1982.

Very truly yours,

ISOMEDIX, INC.

David P. Constantine Production Manager

DC/mjb

APPENDIX B LIST OF DATA ACQUISITION INSTRUMENTS

LABEL

10 - 7 - 81

9065

0-150 ACA

CT-231

c)

1 or

SHEET

0.5%

7-18-82

1 - 11 - 82

7784 7890 8892

0-80" H20

<u>04-49053-1</u>

BARTON THERMO

MEGOHMMETER

X-DUCER X-DUCER

GAUGE

YOM

FLOW GAUGE DIGITAL I/C METER

2

LABEL DATA

6-6-82

2-2-82

5-2-82 7-4-82

5-4-81

0-50 VDC 0-150 ACA

330

BECKMAN **BECKMAN**

M

0-400°F

DIGIMITE

ELECT

25

2.0°F ± 0.05% ± 2.0°F ACCY. DATA + 1% DATA +1 ADAIR SYSTEM CALIBRATION SYSTEM CALIBRATION 1-25-82 58722 6-13-82 6-16-82 5-30-82 4-25-82 6-13-82 5-2-82 7-4-82 8-1-82 8 - 1 - 825-2-82 8 - 1 - 82Š 6 CALIBRATION MITNESS **TEST BY** JOB NO. DATE 12-11-81 12-29-81 12-16-81 1 - 26 - 82LAST 1 - 28 - 821 - 22 - 8212-7-81 2-2-82 2-2-82 5-4-81 7-1-81 199838 WYLE NO. 32738 19937 3606 8674 8672 8893 4435 8892 8750 8290 8032 8401 CABLE SPLICE ASSEMBLIES -350°F to +752°F +752°F +752°F C. 0-100 psi 100-500V₁₃ 0-5 x 10¹³ 0-5K VOLTS -350°F to RANGE -350°F to 0-100 psi 0-100 psi SEE REC. INSP. INSP. 1-500 mV 1-500 mV VARIOUS VARIOUS VARIOUS SEE REC. RAYCHEM LOCA MODEL NO. 2160A DP-15 np-15 2160A 7132A DR-2B 2160A 7132A 4045 7320 1864 330 330 CUSTOMER SPECIMEN PART NO. TEST: Z/S MANUFACTURER FLUKE ASSOCIATED RESEARCH HEWLETT VALIDYNE GENERAL RADIO VALIDYNE ASHCROFT BECKMAN PACKARD PACKARD BECKMAN HEWLETT FLUKE FLUKE KAYE WYLE LABORATORIES DIGITAL THERMOMETER THERMOMETER DIGITAL THERMOMETER

A/C D/C HYPOT

RECORDER RECORDER

EQUIPMENT

RECORDER DIGITAL

Š

2.0°F

2

Where applicable, the listed test equipment has been calibrated using standards which are traceable to the National Bureau of Standards. Certificates and reports of all calibrations are retained in the Wyle Laboratories (A files and are available for inspection upon request.

H Q.A. Approval W614D

CURRENT CLAMP

[ACCY.	0.5% SCALE	± 0.1%	198								
58722 1-25-82 6. ADAIR	TION	5-30-82	6-31-82	4-15-82						Ī		
JOB NO. DATE TEST BY WITNESS	CALIBRATION	2-24-82	12-31-81	10-15-81			:					
8	WYLE NO.	30190	L30106	-								
CABLE SPLICE ASSEMBLIES RAYCHEM SEE REC. INSP. LOCA	RANGE	0-200 PSI	0-5kV A.C.	0-500 шV							•	
!	MODEL NO.	7322	4030	154201212 6927								
SPECIMEN CUSTOMER PART NO. S/N TEST:	MANUFACTURER	ASHCROFT	ASSOCIATED RESEARCH	HONEYWELL								
WYLE LABORATORIES	EQUIPMENT	GAUGE	A. C. HIGHPOT									

2 oF SHEET Where applicable, the listed test equipment has been calibrated using standards which are traceable to the National Bureau of Standards. Certificates and reports of all calibrations are retained in the Wyle Laboratories OR files and are available for inspection upon remissi.

Q.A. Approval MI

W614D

~