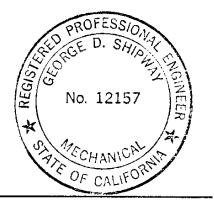
TEST REPORT

WYLE LABORATORIES

SCIENTIFIC SERVICES & SYSTEMS GROUP WESTERN OPERATIONS, NORCO FACILITY
 REPORT NO.
 58722-1

 OUR JOB NO.
 ND_58722

 CONTRACT


 YOUR P. O. NO.
 A02011-2

RAYCHEM CORPORATION 300 Constitution Drive Menlo Park, CA 92024

26 - Page Report

DATE 24 August 1982

ENVIRONMENTAL QUALIFICATION TEST REPORT OF RAYCHEM NPKV NUCLEAR PLANT STUB CONNECTION KIT FOR RAYCHEM CORPORATION

STATE OF CALIFORNIA COUNTY OF RIVERSIDE }ss.	DEPAR'
R. C. Myrick , being duly sworn, deposes and says: That the information contained in this report is the result of complete and carefully enducted tests and is to the best of his knowledge true and correct in all respects.	DEPT. N
K.C. Myrick	TEST E
SUBSCRIBED and Sworn to before me this 24 day of August, 19 82	REGIST PROFES ENGINE
Notary Public in and for the County of Riverside, State of California	
OFFICIAL SEAL	DCAS-
W-867A W comm. expires JUL 14, 1983	QUALIT

DEPARTMENT	DYNAMICS
DEPT. MGR.	J. Anderson
TEST ENGINEER	F. Goad
REGISTERED PROFESSIONAL ENGINEER	hipnen -
DCAS-QAR VERIFICATION	

UALITY ASSURANCE L. HOUSTEAU

TABLE OF CONTENTS

Section	Title	<u>Page</u>
1.0	SUMMARY	1
2.0	TEST SPECIMEN	2
	2.1 Materials and Construction	2
3.0	TEST PROGRAM	4
	3.1 Test Sequence3.2 Functional Test Procedures3.3 Specimen Preconditioning3.4 LOCA/MSLB Environmental Exposure	4 4 5 6
4.0	TEST RESULTS 4.1 Functional Test Results 4.2 LOCA/MSLB Environment 4.3 Post LOCA/MSLB Inspection	11 11 11 12
5.0	CONCLUSIONS	13
	TABLES	16-19
	APPENDICES	

FIGURES

<u>Title</u>

<u>Page</u>

Figure 1 -	Specimen Construction	
Figure 2 -	Diagram of LOCA/MSLB Pressure Vessel and Auxiliary	7
	Equipment	
Figure 3 -	Specimen Installation	8
Figure 4 -	Schematic for Energizing Specimens	9
Figure 5 -	Temperature and Pressure Profiles for Simulation	10
-	of LOCA/MSLB Environment	

TABLES

17
18
19

APPENDICES

Appendix A - Certificate of Radiation Dose	A1
Appendix B - List of Data Acquisition Instruments	A2

1.0 <u>SUMMARY</u>

Seven specimens of the Raychem Nuclear Plant Stub Connection Kit (NPKV) configuration were subjected to an environmental qualification type test to demonstrate their capability to maintain functional operability under all service conditions postulated to occur within the containment of nuclear generating stations during the installed life of the product. The qualification program was based upon the methods, procedures and guidelines set forth in IEEE Standards 323-1974¹ and 383-1974² as endorsed by USNRC Regulatory Guides 1.89³ and 1.131⁴ respectively.

The test specimens were exposed to a single environmental profile encompassing temperatures up to 228°C (442°F) that enveloped the conditions produced by main steamline break and loss-of-coolant accidents (MSLB/LOCA), in accordance with the simulated environmental profile preferred by NUREG-0588⁵ for qualifying equipment located inside containment. A caustic solution was sprayed on the test specimens throughout the environmental exposure to simulate conditions that would occur when containment spray systems actuate. Extremes in power supply voltage ranges were simulated by energizing the test specimens at the maximum allowable ampacity of the No. 12 AWG insulated conductors and at full rated voltage (1000V a-c).

The effects of installed life were simulated by the accelerated aging of four test specimens to an equivalent service life in excess of 42 years at 90°C (194°F). Accelerated aging was accomplished via thermal exposure at a rate based upon the Arrhenius data documented in Raychem Report EDR-5040. These specimens were then exposed to gamma radiation at a level to include both the postulated LOCA accident dose and a dose equivalent to an installed

Page 2

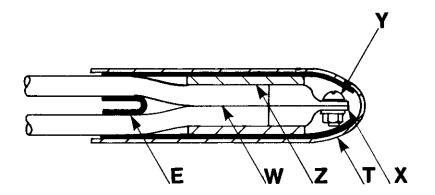
assembly containment exposure integrated over a 40 year period. The remaining three specimens received only the postulated accident radiation dose to simulate beginning of life LOCA/MSLB exposure. The thermally aged and the unaged specimens received in excess of 2.15×10^8 rads gamma and 1.65×10^8 rads gamma respectively.

Acceptance criterion was established as the specimen's ability to maintain rated voltage and current during and after the environmental exposure. Margin was demonstrated by the specimen's ability to pass voltage withstand testing at 80 volts per mil based on the wire insulation thickness.

Based upon the satisfactory performance of the specimens during this test program, it was concluded that the Nuclear Plant Stub Connection Kit (NPKV) is suitable for use inside the containment of nuclear power generating stations.

The LOCA/MSLB environmental exposure was performed by Wyle Laboratories, Norco, California. Thermal preconditioning of samples was performed at Raychem Corporation, Menlo Park, California. Radiation sample preconditioning was performed at Isomedix Inc., Parsippany, New Jersey.

2.0 TEST SPECIMEN


2.1 Materials and Construction

2.1.1 Each test specimen was constructed of Raychem's nuclear grade extrusion and molding materials taken from standard production. All components conformed to the applicable Raychem Specification Component Drawings referenced in Figure 1.

2.1.2 All test specimens were assembled by Raychem personnel in the configuration shown in Figure 1, using Raychem's standard cable preparation

Applicable Raychem

and splice assembly procedures. The cables were cleaned with 1,1,1 Trichloroethane prior to splice assembly and the components were installed using a Raychem CV-5000 Thermogun, Model 750, hot air heater.

<u>Key</u>	Component	Description	Specification Component Drawing
Е	302A812-52-10/144	Conductor Sealing Breakout	SCD-48019
Z	WCSF-200-1-U	Breakout Body Shim	SCD-37001
Т	101A062-52/144	End Cap	SCD-48015
W	1/C-#12 AWG Wire	Rockbestos XLPE	NA
		0.03 inch insulation thickness	
Х	Ring Tongue Terminals	3/4 inch length	NA
Y	Bolt	1/2 inch long x 3/8 inch diameter	NA

Figure 1. Specimen Construction

2.1.3 In addition to these seven specimens, several other types of products were tested in this program. The other constructions are the subject of separate reports. For clarity of data presentation, the seven constructions reported herein are referenced as specimen numbers 1 through 7. These specimen numbers are cross-referenced with actual Raychem specimen identification numbers in Table 1.

3.0 TEST PROGRAM

3.1 Test Sequence

In conformance with Section 6.3.2 of IEEE Standard 323-1974¹, test specimens were neither modified nor altered after assembly and each specimen was used throughout the entire test sequence. The test sequence comprising this qualification type test is listed below:

<u>Sequence</u>	Test Description
1.	Functional Tests
2.	Specimen Preconditioning
3.	Functional Tests
4.	LOCA/MSLB Environmental Exposure
5.	Functional Tests

3.2 Functional Test, Procedures

Functional tests were repeated three times during the test program as shown in Section 3.1. Prior to the performance of each functional testing cycle, all test specimens were immersed in tap water at room temperature for a minimum of 16 hours. Each splice assembly being tested was submerged 12 or more inches below the water's surface during the 16 hour soak. All functional tests were performed with the specimens immersed in the water bath. Test values are summarized in Table 2. Equipment calibration data is provided in Appendix B.

3.2.1 Insulation Resistance (I.R.)

After the 16 hour immersion, while still in the water bath, the I.R. of each specimen was measured. Measurements were made at 500 volts d-c after one minute of electrification. The water bath was used as the ground plane during this test.

3.2.2 Voltage Withstand

After the I.R. of each specimen was measured and while still in the water bath, a 2400 volt a-c voltage withstand test was performed on each test specimen in accordance with ICEA S-61-402, 6.11.2.⁷ Using the water bath as ground, the voltage was applied to the conductor in each specimen.

3.3 Specimen Preconditioning

3.3.1 Thermal Aging

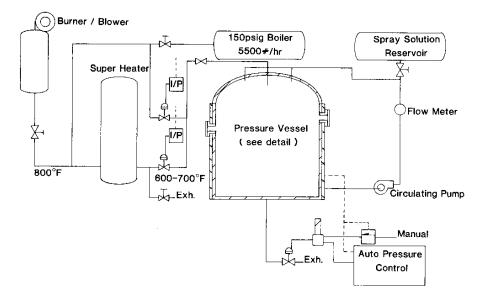
Four specimens were thermally aged to simulate a service condition of over 40 years based upon Arrhenius data for Raychem's nuclear grade materials as documented in Raychem Report EDR-5040.⁶ Two separate time-temperature relationships were used for thermal aging, resulting in two separate installed life equivalents at 90°C (194°F). Two specimens were heat aged to an equivalent of 48.9 years and two specimens were heat aged to an equivalent of 42.8 years. The remaining three specimens were not thermally aged, simulating the condition of product at the beginning of installed life. All thermal conditioning was accomplished at Raychem Corporation. Specimens were placed horizontally in a circulating air oven throughout the aging period. Aging times and temperatures used are presented in Table 1.

3.3.2 Radiation Aging

The radiation dose determined to represent the gamma exposure to installed assemblies within containment over a 40 year period was 5.0×10^7 rads. The postulated accident gamma radiation dose was 1.5×10^8 rads.

Thermally aged specimens were exposed both to the postulated accident dose, plus 10 percent margin, and the dose representing 40 years of installed life totaling 2.15×10^8 rads gamma. The samples simulating the beginning of installed life received only the postulated accident dose plus 10 percent margin for a total dose of 1.65×10^8 rads gamma.

The actual gamma radiation exposures exceeded the required 2.15 x 10^8 rad and 1.65 x 10^8 rad levels. Table 1 depicts the actual air equivalent radiation doses and associated dose rates by specimen number. The radiation source utilized was $C0^{60}$ and the Certificate of Radiation is shown in Appendix A.


3.3.3 Functional Tests

The functional tests were again performed after specimen preconditioning as described in Section 3.2. Test values are listed in Table 2.

3.4 LOCA/MSLB Environmental Exposure

The test specimens were placed on perforated metal trays inside a pressure vessel. Five specimens (Nos. 1, 2, 4, 6, and 7) were installed horizontally in conduit outlet boxes to simulate field installation in a conduit fitting or box. To allow sample exposure to the environment, the conduit outlet box opening was left uncovered and positioned on the bottom. The remaining two specimens (Nos. 3 and 5) were positioned horizontally upon the tray without the covering. A diagram of the pressure vessel is given in Figure 2. Figure 3 shows the installation of test specimens in the pressure vessel.

58722-1 Page 7

Auxiliary Equipment

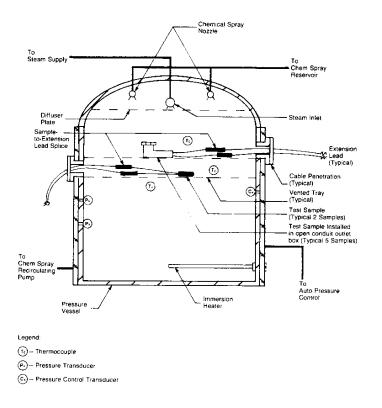


Figure 2. LOCA/MSLB Pressure Vessel and Auxiliary Equipment

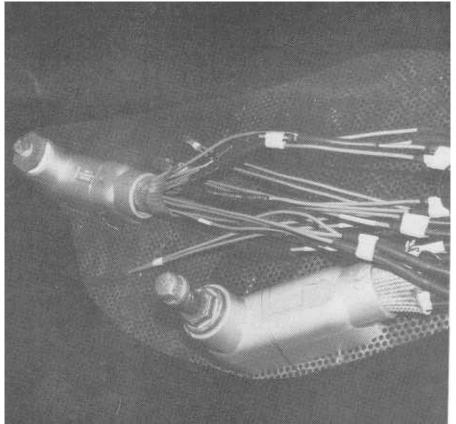


Figure 3. Specimen Installation

Extension leads were spliced to the test specimens inside the pressure vessel and insulated with Raychem WCSF-N tubing. The extension leads were brought out of the test vessel through penetrations installed in the pressure vessel wall to allow for electrical connection and monitoring. The specimens were energized at 1.0 kV a-c to ground and carried a current of 30 amperes. Current values were sampled throughout the test and are presented in Table 3. The voltage energization circuit for each test specimen was separately fused at 1/4 amp. A schematic of the energizing circuit is given in Figure 4.

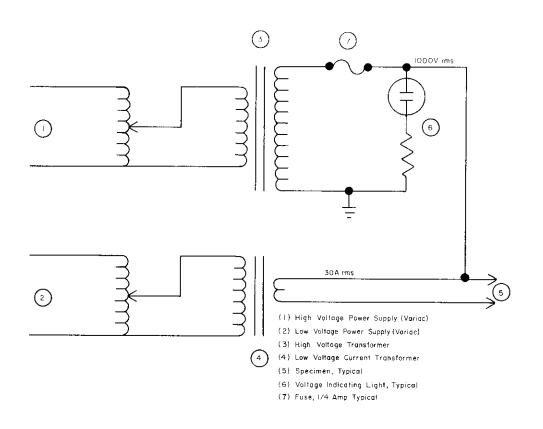
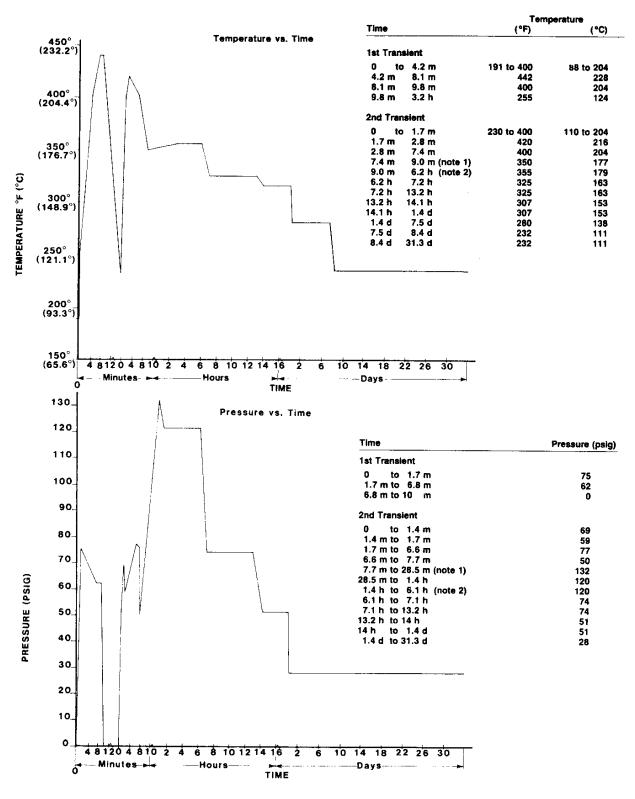
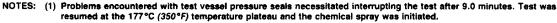




Figure 4. Test Schematic for Energizing Specimens

A chemical spray solution consisting of 0.28 molar H_3BO_3 (3000 ppm boron), 0.064 molar $Na_2S_2O_3$, buffered with NaOH to a pH of 10.5 at 25°C (77°F) was provided in a separate reservoir. This solution was sprayed through two nozzles from the top of the vessel at a rate in excess of 0.15 gpm/ft beginning immediately after the second temperature transient and ending upon completion of the 30-day environmental exposure (actual flow was 34 gpm). The temperatures, pressures, and spray duration throughout the test period are given in Figure 5.

58722-1 Page 10

(2) Problems encountered with the test specimen extension leads and the test vessel pressure seals necessitated interrupting the test after 5 hours. The test was resumed at the 177 °C (350 °F) temperature plateau to complete the required exposure at this temperature level.

Figure 5 - Temperature and Pressure Profiles for Simulation of LOCA/MSLB Environment

4.0 <u>TEST RESULTS</u>

4.1 <u>Functional Test Results</u>

The results of all voltage withstand tests and insulation resistance measurements are listed in Table 2. Test specimen current loading values during the environmental exposure are presented in Table 3. All specimens passed voltage withstand tests and measured high insulation resistance throughout the test sequence specified in Section 3.1. Three test specimens (Nos. 3, 4 and 7) were unable to pass post environmental exposure functional tests while installed in the test vessel. These specimens passed functional tests after removal from the test vessel and exclusion of faulty extension leads from test.

4.2 LOCA/MSLB Environment Exposure

The following details of the profile depicted in Figure 5 are noted:

a. The temperature of 204°C (400°F) was not reached in 10 seconds as proposed in Raychem Test Plan No. NPE-TP-81-03.[®] Attainable rise times were governed by the apparatus selected to encompass the entire scope of the Raychem test plan and precluded meeting the proposed temperature rise time.

However, during the temperature transients, both the peak temperatures and temperature durations exceeded those proposed.

b. Problems encountered with test vessel pressure seals and the test specimen extension leads necessitated interrupting the test after the second temperature transient and again after five hours of specimen exposure at the 177°C (350°F) temperature plateau. During the interruption at the 177°C (350°F) plateau, the specimens were visually inspected. All specimens appeared to be in good condition. Replacement of the vessel penetration seals was required at this point which necessitated replacement of test specimen extension leads. The specimens themselves were not modified or changed in any way. The test was resumed at the 177°C (350°F) temperature plateau to complete the required specimen exposure at this level.

c. The test specimens were exposed to the LOCA/MSLB environment for 31.3 days rather than the 30 days proposed in Raychem Test Plan No. NPE-TP-81-03.⁸

4.3 Post LOCA/MSLB Inspection

At the conclusion of the environmental exposure, the test vessel was flooded with tap water. The test specimens were then given a voltage withstand test and the insulation resistances were measured. Test values are listed in Table 2. The vessel was then opened and the cause for some test circuits being unable to hold rated voltage throughout the environmental exposure investigated.

At this point, specimen extension wires were severed inside the vessel and the specimens were removed for examination. The specimens unable to pass voltage withstand testing were retested in a water bath and again insulation resistance measurements were made.

Specimen No.2 did not hold rated voltage throughout the environmental exposure. However, it passed the voltage withstand test and had a high insulation resistance while immersed inside the test vessel. This specimen was retested in a water bath and again passed voltage withstand and measured high insulation resistance.

Specimens 3, 4, and 7 did not hold rated voltage throughout the environmental exposure nor did they pass the voltage withstand test while immersed inside the test vessel. These specimens were retested in a water bath. All specimens

were found to have cracks in the wire insulation of the test loops. Specimen No. 3 had cracks in the wire insulation too close to allow immersion of the specimen in the water bath. Therefore, this specimen was wrapped with a cotton cloth saturated with water as the ground electrode. With the cracked wire insulation excluded from the test, this specimen passed the voltage withstand test and had high insulation resistance. Specimen Nos. 4 and 7 had cracks in the wire insulation sufficiently distant from the specimen area to allow immersion of the specimens. Both specimens passed the voltage withstand tests and had high insulation resistances.

A summary of these findings is given in Table 4.

5.0 <u>CONCLUSIONS</u>

Seven specimens of Raychem's NPKV configuration were subjected to an environmental qualification type test program designed to simulate the service conditions produced by main steamline break and loss-of-coolant accidents (MSLB/LOCA). The test specimens were exposed to the LOCA/MSLB environmental extremes of temperature, humidity, pressure and chemical spray while energized at maximum rated current and voltage. These test specimens were conditioned to simulate both the beginning of installed life and over 40 years of installed life. They were exposed to LOCA/MSLB levels of radiation to include both accident dose margin and the postulated containment radiation dose integrated over 40 years of installed life.

The NPKV product configuration demonstrated the ability to insulate and seal stub connections when subjected to LOCA/MSLB environmental conditions. All specimens had the ability to maintain rated voltage and current throughout the environmental exposure and demonstrated satisfactory electrical performance at the conclusion of the test program. Although specimen No. 2

did not hold voltage throughout the environmental exposure, it passed functional testing at the conclusion of the test both while installed in the pressure vessel and when removed and tested in a water bath. It was therefore concluded that the inability of the specimen to hold rated voltage was due to a transient electrical fault associated with the specimen energization circuitry. Specimen Nos. 3, 4 and 7 did not hold voltage throughout the exposure. Both visual examination and specimen retest evidenced that the specimen test loops were unable to hold voltage due to cracks in the test loop wire insulation. In all cases, functional testing subsequent to the environmental exposure substantiated the ability of the NPKV configuration to maintain electrical integrity throughout the test program. All specimens demonstrated performance margin at the conclusion of the test, having passed the voltage withstand test and measuring high insulation resistance.

The results of this comprehensive test program provide reasonable assurance, by type test, that the Raychem NPKV configuration can perform its intended function of insulating and sealing stub connections in the most limiting environment in which it is expected to function. Therefore, it is concluded that the NPKV is suitable for use on Class IE systems within the containment of nuclear power generating stations.

REFERENCES

- 1. IEEE Standard 323-1974, "IEEE Standard for Qualifying IE Equipment for Nuclear Power Generating Stations."
- 2. IEEE Standard 383-1974, "IEEE Standard for Type Test of Class IE Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations."
- 3. USNRC Regulatory Guide 1.89, "Qualification of Class IE Equipment for Nuclear Power Plants "
- 4. USNRC Regulatory Guide 1.131, "Qualification Tests of Electric Cables and Field Splices for Light-Water-Cooled Nuclear Power Plants."
- 5. NUREG-0588, "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment."
- 6. EDR-5040, Raychem Report "Analysis of Heat Aging Data on -52 Molding Material to Determine Pre-Aging Conditions for Nuclear Qualification Testing."
- 7. ICEA S-61-402, "ICEA/NEMA Standards Publication Thermoplasticinsulated Wire and Cable for the Transmission and Distribution of Electrical Energy."
- 8. NPE-TP-81-03, "Environmental Qualification Test Plan of Raychem Nuclear Cable Splice Assemblies."

	Rate (rads/hr)	5.7×10^{5}	5.7×10^{5}	5.7×10^{5}	5.7 × 10 ⁵	4.7×10^{5}	4.7×10^5	4.7×10^{5}	s throughout
i Aging	Rate (5.7	5.7	5.7	5.7	4.7	4.7	4.7	Number
Radiation Aging ³	Dose (rads)	2.2 × 10 ⁸	1.7×10^{8}	1.7×10^{8}	1.7×10^{8}	acent Specimen			
	Installed ² Life Equivalent	42.8 yrs	42.8 yrs	48.9 yrs	48.9 yrs	Day 1	Day 1	Day 1	Raychem Specimen Identification Numbers are referred to by adjacent Specimen Numbers throughout this report for clarity and ease of understanding.
Thermal Aging ⁴	Duration	916 hrs.	916 hrs.	138 hrs.	138 hrs.	I	1	ı	Numbers are of underste
The	Temperature	150°C (302°F)	150°C (302°F)	175°C (347°F)	175°C (347°F)	Unaged	Unaged	Unaged	en Identification r clarity and eas
	Raychem I.D. ¹ Number	15	16	199	200	147	148	146) Raychem Specim this report fo
	Specimen <u>Number</u>	1.	2.	Э.	4.	5.	6.	7.	Notes: (1)

- ب
- Installed Life Equivalents are based upon Arrhenius data documented in Raychem Report EDR-5040⁶ for continuous conductor temperature of 90°C (194°F). (2)
- All Radiation Aging values listed are air equivalents of gamma radiation from a Co⁶⁰ source. (3)
- Both the 916 and 138 hour Thermal Aging exceeded the required aging time to simulate 40-year life for the cable. (4)

58722-1 Page 16

TEST SPECIMEN CONDITIONING SUMMARY

TABLE 1

				Tes	Test Specimen Insulation Resistance (ohms)	nsulation Re	sistance (o	hms)	
<u> Test Conditions</u>	Temperature (°C) (°F)	vre Vessel °F) Pressure (psig)		2.	3.	4.	5.	6.	<u></u>
Functional Tests Before Conditioning (Note 1)	Ambient	ł	5.1 × 10 ⁹	3.5 × 10 ¹⁰	6.0 × 10 ¹⁰	7.0 × 10 ¹⁰	5.8 × 10 ⁹	1.3 × 10 ¹¹	4.0 × 10 ⁹
Functional Tests After Conditioning (Note 1)	Ambient	I	6.6 × 10 ¹	× 10 ¹¹ 6.4 × 10 ¹¹	1.1 × 10 ¹²	1.4 × 10 ¹²	1.7 × 10 ¹² 1.4	1.4 × 10 ¹²	2.8 × 10 ¹¹
Functional Test During LOCA/MSLB Exposure	ing LOCA/M	SLB Éxposure							
After 3 hours	177 35	350 120	7.0×10^{7}	7.0×10^7	Note 2	Note 2	1.4 × 10 ⁸	1.2×10^{8}	1.1 × 10 ⁸
After 9 hours	163 32	520 74	7.0 × 106	7.6 × 106	4.0 × 10 ⁶	6.0 × 10 ⁶	1.3 × 107	1.2×10^{7}	9.0 × 10 ⁶
After 23 hours	153 3(300 51	6.2 × 106	7.8 × 10 ⁶	5.0 × 106	1.5×10^{7}	2.4×10^7	1.7×10^7	1.6×10^7
After 82 hours	138 28	280 28	5.0 × 107	Note 3	Note 4	Note 4	5.2×10^{7}	4.2×10^{7}	Note 4
After 132 hours	138 21	280 28	5.0×10^{7}				5.2×10^{7}	4.0 × 10 ⁷	
After 272 hours	111 2	232 28 (Note 5)	3.6 × 10 ⁸				2.4 × 10 ⁸	1.9×10^{8}	
After 363 hours	111 2	232 28	2.8×10^{8}				2.5 × 10 ⁸	1.6 × 10 ⁸	
After 454 hours	111 2	232 28	3.0 × 108				2.8 × 10 ^θ	1.8×10^{8}	
After 546 hours	111 2	232 28	3.4 × 108				3.8×10^{8}	2.2×10^{8}	
After 637 hours	111 2	232 28	4.0 × 10 ⁸				4.6 × 10 ⁸	2.8×10^{8}	
lest vessel filled with water (Note 1)	Ambient	I	4.5 × 10 ⁹	5.8 × 10 ⁹			8.4 × 10 ⁹	2.0 × 10 ¹⁰	
Samples 2,3,4 & 7 removed from vessel and retested (Note 1)	Ambient	ı	AN	5.0 × 10 ¹¹	2.0 × 10 ¹¹	3.0 × 10 ⁹	NA	N	3.5 × 10 ¹¹
	ecimens lit		ion resistance value also passed voltage withstand testing per section 3.2.2	so passed vol	ltage withsta	nd testing p	er section	3.2.2	
(2) Specimi (3) Subsequer	en was re- uent test f 1 23 and 82	Specimen was re-fused and held 1.0 kV. Reason fuse opened is unknown. Subsequent test found no insulation damage in wire insulation or test specimen. between 23 and 82 hours after start of test, it passed voltage withstand testin	Reason fuse opened is unknown. age in wire insulation or test specimen. test, it passed voltage withstand testing	ned is unknow lation or tes voltage withs	n. it specimen. itand testing		is specimen h insulatio	Although this specimen's 1/4 amp fuse opened and had high insulation resistance.	Page paulo asn

TABLE 2

SUMMARY OF INSULATION RESISTANCE MEASUREMENTS

58722-1

Test vessel was externally pressurized with air to maintain a minimum pressure of 28 psig.

(4)

(4) Subsequent test showed inability to hold voltage due to cracks in wire insulation.

5 6 7	28 27 27	29 27 29	29 25 Note 3	30 27	5 0 28	30 29	29 28	28 25	30 23	29 23	30 24	29 25	29 25	30 26	30 25	29 28	30 25	28 24	29 2B
4	28	28	27	28	3 Note 3														
~	28	28	28	29	3 Note														
2	29	2 29	2 28	<i>3</i> 0	Note														
-	28	Note 2	Note 2	27	30	30	4) 30	28	30	28	27	29	27	27	29	29	29	30	29
Vessel Pressure (psig)	1	120	51	28	28	28	28 (Note	28	28	28	28	28	28	28	28	28	28	28	28
ature (°F)	183	350	307	280	280	280	232	232	232	232	232	232	252	232	232	232	232	232	232
Temperature (°C) (°F)	84	177	153	138	138	1 38	111	111	111	111	111	111	111	111	111	111		111	111
lest Conditions	Pre-LDCA/MSLB (Note 1)	After 3 hours	After 26 hours	After 2 days	After 3 days	After 6 days	After B days	After 9 days	After 13 days	After 15 days	After 17 days	After 20 days	After 22 days	After 24 days	After 27 days	After 28 days	After 29 days	After 30 days	After 31 davs

Specimen was re-fused and held 1.0kV throughout remainder of test. Reason fuse opened is unknown.

Test vessel was externally pressurized with air to maintain a minimum pressure of 28 psig.

Current was terminated on specimens when the 1/4~amp fuse opened.

(F)

(2)

CURRENT MONIFORING OF FEST SAMPLES DURING LOCA/MSLB ENVIRONMENTAL EXPOSURE

TABLE 3

58722-1 Page 18

TABLE 4

POST LOCA/MSLB INSPECTION SUMMARY

Results of Inspection	Maintained voltage and current throughout environmental exposure. No visible damage to test specimen or wire insulation.	Visible cracks in wire insulation in close proximity to specimen. Passed subsequent VWT* with high I.R.	No visible damage to test specimen or wire insulation. Passed VWT* both while immersed in test vessel and water bath. Failure was external to test vessel.	Cracks in wire insulation. Passed VWT* in water bath with high I.R.	Maintained voltage and current throughout environmental exposure. No visible damage to test specimen or wire insulation.	Maintained voltage and current throughout environmental exposure. No visible damage to test specimen or wire insulation.	Cracks in wire insulation. Passed VWT* in water bath with high I.R.
Duration of Sample Energization	31 days	3 days	3 days	3 days	31 days	31 days	1 day
Specimen Number	1.	2.	°.	4.	5.	0 .	7.

*VWT - Voltage Withstand Test

<u>APPENDIX A</u>

CERTIFICATION OF RADIATION DOSE

58722-1 Page A1

February 18, 1982

Mr. Joe Connolly Ray Chem Corporation 300 Constitution Drive Menlo Park, California 94025

Dear Mr. Connolly:

This will summarize parameters pertinent to the irradiation of two (2) containers of cable splice samples, as per your Purchase Order #A07349. Specimens were identified as follows:

Group I - R-24593- 165 megarad box

Group II - R-24591 - 215 megarad box

The specimens in Group I were exposed to a Cobalt 60 gamma source for a period of 362 hours at a nominal dose rate of 0.47 megarads per hour. The calculated dose based on dosimetry is 170 megarads. Halfway through the exposure, the specimens were rotated 180 degrees to give a more uniform dose distribution.

The specimens in Group II were exposed to a Cobalt 60 gamma source for a period of 386 hours at a nominal dose rate of 0.57 megarads per hour. The calculated dose based on dosimetry is 220 megarads. Halfway through the exposure, the specimens were rotated 180 degrees to give a more uniform dose distribution.

Dosimetry was performed using Harwell Red 4034 Perspex dosimeters, utilizing a Bausch and Lomb Model 710 spectrophotometer as the readout instrument. This system is calibrated directly with NBS, with the last readout calibration being September 08, 1981. A copy of the dosimetry correlation report is available upon request.

Irradiation was conducted in air at ambient temperature and pressure. Radiant heat from the source heated the specimens somewhat, but the temperature did not exceed 130 degrees F, as indicated by previous measurements on an oil solution in the same relative position.

Isomedix Inc. • 25 Eastmans Road, Parsippany, New Jersey 07054 • (201) 887-2666

58722-1

Page A2

Mr. Joe Connolly

-2-

February 18, 1982

Irradiation for Group I was initiated on December 31, 1981, and was completed on January 20, 1982.

Irradiation for Group II was initiated on December 31, 1981 and was completed on January 22, 1982.

Very truly yours,

ISOMEDIX, INC.

P. Constantine

David P. Constantine Production Manager

DC/mjb

<u>APPENDIX B</u>

LIST OF DATA ACQUISITION INSTRUMENTS

	DATE	TEST BY	WITNESS -		
CABLE SPLICE ASSEMBLIES	RAYCHEM	SEE REC. INSP.	SEE REC. INSP.	LOCA	
SPECIMEN	CUSTOMER	PART NO.	S/N	TEST:	

58722	1-25-82	G. ADAIR	
	ATE	EST BY	ITNESS

.	
-	
E.	
0	
5	
5	
x	
•	
-	
-	
>	
ž	

		MODEL		MVI E		CALIABATION	
EQUIPMENT	MANUFACTURER	NO.	RANGE	NO.	LAST	DUE	ACCY.
NOM	BECKMAN	330	VARIOUS	8892	5-4-81	5-2-82	DATA
RECORDER	КАҮЕ	DR-2B	VARIOUS	8750	1-28-82	8-1-82	± 0.05%
DIGITAL THERMOMETER	FLUKE	2160A	-350°F to +752°F	8401	12-7-81	6-13-82	± 2.0°F
DIGITAL THERMOMETER	FLUKE	2160A	-350°F to +752°F	8290	1-26-82	5-30-82	± 2.0°F
DIGITAL THERMOMETER	FLUKE	2160A	-350°F to +752°F	8032	12-29-81	5-2-82	± 2.0°F
A/C D/C HYPOT	ASSOCIATED RESEARCH	4045	0-5K VOLTS	9092	12-11-81	6-13-82	± 2%
RECORDER	HEWLETT PACKARD	7132A	1-500 mV	8674	SYSTEN	CALIBRATION	
RECORDER	HEWLETT Packard	7132A	1-500 mV	8672	SYSTEN	CAL IBRATION	
NOM	BECKMAN	330	VARIOUS	8893	7-1-81	7-4-82	DATA
GAUGE	ASHCROFT	7320	0-100 psi	4435	1-22-82	4-25-82	1
X-DUCER	VAL IDYNE	0P-15	0-100 psi	19937	2-2-82	8-1-82	± 1%
X-DUCER	VAL IDYNE	DP-15	0-100 psi	32738	2-2-82	8-1-82	± 1%
MEGOHMMETER	GENERAL RADIO	1864	100-500γ 0-1 × 10 ¹³ Ω	L99838	12-16-81	6-16-82	± 5%
FLOW GAUGE	BARTON	D4-49053-1	0-80" H ₂ 0	7784	1-11-82	7-18-82	± 0.5%
DIGITAL T/C METER	THERMO	DIGIMITE	0-400°F	7890	2-2-82	6-6-82	LABEL
DMM	BECKMAN	330	0-50 VDC 0-150 ACA	8892	5-4-81	5-2-82	DATA
CURRENT CLAMP	BECKMAN	CT-231	0-150 ACA	9065	10-7-81	7-4-82	LABEL
W614D Q.A. Approval RCA	Where applicable, to the National B the Wyle Laborato	the listed test ureau of Standar ries QA files an	where applicable, the listed test equipment has been calibrated using standards which are traceable to the Mational Bureau of Standards. Certificates and reports of all calibrations are retained in the Wyle Laboratories QA files and are available for inspection upon request.	brated using corts of all sotion upon r	standards which are t calibrations are reta equest.	raceable SHEET 1 Lined in	0F 2

58722-1 Page B1

			FC. INSP.				
	PART NO.	NO. SEE KEL INST.			TEST BY	IN G. ADAIR	1
	S/N		SEE REC. INSP.			WITNESS	
wyr f i Abgratories	F	LOCA					
		MODEL		WVIE	CALIR	CALIRRATION	
EQUIPMENT	MANUFACTURER	NO.	RANGE	NO.	LAST	DUE	ACCY.
GAUGE	ASHCROFT	7322	0-200 PSI	80190	2-24-82	5-30-82	0.5% FULL SCALE
ніснрот	ASSOCIATED RESEARCH	4030	0-5kV A.C.		12-31-81	6-31-82	± 0.1%
~			0-500 mV		10-15-81	4-15-82	± 1%

CABLE SPLICE ASSEMBLIES SPECIMEN

© 1983 Raychem Corporation Prinated in USA H51801 EDR 5065 2463

58722-1 Page B2

58722

JOB NO.

Q.A. Approval RCH

M614D

Where applicable, the listed test equipment has been calibrated using standards which are traceable SHEET 2 to the Mational Bureau of Standards. Certificates and reports of all calibrations are retained in the Wyle Laboratories (A files and are available for inspection upon request.

 \sim

ų.