Raychem Energy Division

Report

Title ENVIRONMENTAL QUALIFI OF RAYCHEM NUCLEAR CA END SEALING KITS	CATION TEST REPORT ABLE BREAKOUT AND	Pages: 34 Enclosures:
WYLE REPORT NO. 58442	2-2	
Report Number:	Date:	· · · · · · · · · · · · · · · · · · ·
EDR-5033	May 1, 1981	
Tested by:	Signature:	Date:
Wyle Laboratories	(see report)	April 3, 1981
Prepared by:	Signature:	Date:
C. F. Albertalli	CFAlbutalli	May 1, 1981
Approved by:	Signature:	Date:
R. J. Scott	$\mathcal{D} \mathcal{O} \mathcal{C} = \mathcal{F}$	1711. 21
for Product Management	R. Y. Jun	i May of
Approved by:	Signature:	Date;
G. J. Clarke		
for Technical Operations	many cara	1/0/ 8/
Raychem Corporation Energy Division		

TEST REPORT

WYLE LABORATORIES SCIENTIFIC SERVICES & SYSTEMS GROUP WESTERN OPERATIONS, NORCO FACILITY

	58442-2
OUR JOB NO	NDQ 58442
CONTRACT	
YOUR P. C. NO.	<u>A01183</u>

Raychem Corporation 300 Constitution Drive Menlo Park, California 94025

DATE 3 April 1981

ENVIRONMENTAL QUALIFICATI OF RAYCHEM NUCLEAR CABLE BREAKOUT FOR RAYCHEM CORPORA MENLO PARK, CALIF	ON TEST REPORT AND END SEALING KITS TION ORNIA WICLEAR OF CALIFORNIA
STATE OF CALIFORNIA COUNTY OF RIVERSIDE Ray C. Myrick deposes and says: That the information contained in this report is the result of complete and carefully conducted tests and is to the best of his knowledge true and correct in all respects. <i>Ray C. Myrick</i> <i>Aug C. Myrick</i> <i>SUBSC RIBEP</i> and sworm to before me this day of <u>April</u> , 19 81 <i>My Commission expires</i> <u>14 July</u> , 19 83	DYNAMICS DEPARTMENT DEPT. MGR. <u>Dept. MGR. <u>Dept. MGR.</u> TEST ENGINEER <u>Mayne Lang</u> Registered Professional <u>E. M. GENNON</u> DCAS-QAR VERIFICATION</u>
W-867A W-867A	QUALITY CONTROL A. Heeseman

CONTENTS

Section	Title	<u>Page</u>
1.0	SUMMARY	1
2.0	TEST SPECIMENS	1
3.0	TEST PROGRAM	5
	3.1 Pretest Inspection	5
	3.2 Thermal Aging	5
	3.3 Radiation Exposure	8
	3.4 Loss of Coolant Accident and	
	Main Steamline Break (LOCA/MSLB)	
	Environmental Exposure	8
4.0	CONCLUSIONS	14
	TABLES	16
	APPENDICES	

FIGURES

Page

Figure 1 - Sample Construction	2
Figure 2 - Detail of Sample Construction	3
Figure 3 - Mandrel and Samples	6
Figure 4 - Mandrel and Samples Immersed in Water	7
Figure 5 - LOCA/MSLB Test Profile	8
Figure 6 - LOCA/MSLB Pressure Vessel	10
Figure 7 - Test Schematic	10
Figure 8 - Test Chamber and Samples	12
Figure 9 - Mandrel after Removal from Vessel	12

TABLES

Table 1 - I.R. Values	16
Table 2 - Current Monitoring of Specimens During	
Simulated LOCA/MSLB Environment	18
Table 3 - Post LOCA/MSLB Investigation Summary	19

APPENDICES

Appendix A - Certificate of Radiation Dose Appendix B - Data Acquisition Instruments Page

<u>Title</u>

1.0 <u>SUMMARY</u>

Six Raychem test specimens, each consisting of four cable breakout and four end cap assemblies, were subjected to a test program based on the guidelines of IEEE Standards 323-1974⁽¹⁾ and 383-1974⁽²⁾ to determine their suitability for service within the containment of a nuclear generating station.

The test program consisted of:

- 1. Thermal aging (O, 1000, 1500 hours @ 150°C)
- 2. Radiation exposure (200 290 Mrads)
- 3. Simulated loss of coolant accident combined with main steamline break (LOCA/MSLB) conditions while the specimens were energized at rated current and voltage. (20A rms, 1000V rms)

The electrical integrity of the specimens was evaluated by:

- 1. Insulation resistance measurements at 500V d-c.
- 2. Voltage withstand tests at 3600V rms for 5 minutes.
- 3. The ability to maintain electrical loading at rated voltage and current during the simulated LOCA/MSLB.

The cable breakout and end cap assemblies demonstrated satisfactory functional performance in this test program All specimens had a high insulation resistance (>10Mohms) and, with the exception of end cap sample 2-IWI, passed a voltage withstand test at the conclusion of the test program.

The test program was conducted by Wyle Laboratories, Norco, California during the period of August, 1979 to February, 1980.

2.0 TEST SPECIMENS

Each test specimen was comprised of four cable breakouts and four end caps forming a loop as shown in Figure 1. The cable breakouts were tested as part of a transition splice assembly

58442-2 Page 2

Figure 1 SAMPLE CONSTRUCTION

- (5) Raychem 403A112-52, Cable Breakout S-1119 Adhesive
- (6) Rockbestos Firewall III Insulated Cable, 1/C, 12 Awg, XLPE Insulation and Jacket
- (7) Rockbestos Firewall III Insulated Wire, 1/C, 12 Awg, .030 inch XLPE Insulation

- (8) Raychem 101A021-52, End Cap, S-1119 Adhesive
- (9) Raychem WCSF-U, Insulating Sleeve, Size 115, 3 inches, uncoated

connecting three No. 14 AWG wires from a multiconductor cable to three No. 12 AWG single conductor wires. Details of the cable breakout and end cap samples tested are shown in Figure 2. The materials used to make the connections are also listed. A total of 24 cable breakouts and 24 end caps were used for the test program.

Because of availability, a five-conductor cable (5/C No. 14) was used for each test specimen loop. Only three of the five conductors were actually used to avoid an excessive number of test vessel penetrations and energizing circuits. The two unused conductors were cut back with the cable jacket inside the splice assembly.

The wire insulations in the test specimen loops were color coded for ease of identification during the test. The red and black wires were continuous throughout the test loops and had voltage and current applied. The white wire was terminated in end caps at four places as shown in Figure 1 and therefore could not have current applied. Voltage was applied to the white wire from each end of the test loop. The white wire in the two cable breakout assemblies and end caps in the middle of the test loop was isolated and could not be energized.

To evaluate the sealing effectiveness of the cable breakout assembly, the crimp splice joining the black insulated wire in each cable breakout assembly was left uninsulated. In this way, any water leakage into the assembly would be detected. In all cases the red and white wire crimp slices were covered with WCSF-N heat shrinkable tubing.

A length of uncoated WCSF (without adhesive lining) was recovered over each cable breakout assembly and end cap.

The ends of the specimen loop were spliced to single conductor No. 12 extension wires using a transition splice assembly similar to the samples tested except that all internal crimp splices

Page 5

were covered with WCSF-N. The extension wires connected the specimen loops to the test vessel penetrations.

3.0 TEST PROGRAM

3.1 <u>Pretest Inspection</u>

The specimens were visually inspected upon receipt at Wyle Laboratories. There was no evidence of damage due to shipping.

3.1.1 Functional Test (Baseline Data)

Each specimen was immersed in water and given a voltage withstand test of 3.6kV a-c for five minutes. All cable breakouts and end caps were immersed during this test. Specimen 2-2 failed the baseline voltage withstand test. The wire insulation was found to be damaged. Specimen 2-6 was used to replace 2-2 to allow the thermal aging to proceed. A replacement for specimen 2-2 was provided by Raychem. All other specimens passed the baseline test.

While still immersed for the above test, the insulation resistance (IR) of each specimen was measured at 500V d-c. These results are given in Table 1 on page 14.

The measurements were made on both the black and red insulated wire in each specimen loop and on the white wire at each end of the loop since the white wire was not continuous throughout the loop. Therefore, four measurements of both IR and voltage withstand were recorded on each specimen.

The continuity of the red and black insulated wires in each specimen loop was also verified with a low voltage ohmmeter.

3.2 Thermal Aging

Two of the six specimen loops were wrapped onto a 20-inch diameter stainless steel mandrel and tied in place. The mandrel and

Page 6

specimens were placed in an air-circulating oven operating at 150°C (302°F) for 500 hours. At that time, two additional specimen loops were added to the mandrel, and the oven aging continued for another 1000 hours. After removal from the oven, the two remaining specimen loops were then added to the mandrel.

Specimen No.	Thermal Aging <u>(Hours at 150°C)</u> 1
2-1	1500
2-6	1500
2-2	1000
2-3	1000
2-4	0
2-5	0

The mandrel, with the specimens in place, is shown in Figure 3.

¹ Both 1000 and 1500 hours at 150°C exceed the required aging time to simulate 40 year life at 90°C for the cable.

<u>Note</u> Several other types of specimens were also tested in this program and are shown on the mandrel. This report covers only the cable breakout and end cap assemblies. The other specimens are the subject of separate reports.

3.2.1 Functional Tests

The mandrel with the specimens in place was immersed in water for functional tests as described in 3.1.1. This was accomplished by splicing long extension leads to each end of the test loops. The splices between the specimens and the extension leads were covered with WCSF-N heat shrinkable tubing. The mandrel in the water is shown in Figure 4.

All specimens again passed the 3.6kV a-c voltage withstand test for five minutes. The insulation resistance values are given in Table 1 on page 14.

FIGURE 4. Mandrel and Samples Immersed in Water

3 3 Radiation Exposure

All the specimens, while still on the mandrel, were subjected to gamma radiation from a Cobalt-60 source. The total air equivalent dose given the specimens ranged from 2.0×10^8 to 2.9×10^8 rads. The dose rate was between 0.32 and 0.47 x 10^6 rads per hour. The certificate of radiation dose is shown in Appendix A.

3.3.1 Functional Tests

The functional tests were again performed as described in 3.1.1. All specimens passed the voltage withstand test. The insulation resistance values are given in Table 1.

3.4 Loss of Coolant Accident and Main Steamline Break (LOCA/MSLB) Environmental Exposure

3.4 Loss of Coolant Accident and Main Steamline Break (LOCA/MSLB) Environmental Exposure (continued)

The specimens on the mandrel were placed in a test chamber capable of exposing the specimens to the steam and chemical spray environment shown in Figure 5.

The extension leads were brought out through penetrations in the vessel to allow the specimens to be energized during the exposure. The specimens were energized at 1.0kV a-c to ground and carried a current of 20 amperes at 25°C ambient at the start of the simulated accident. The current was allowed to drop as the resistance in the conductors increased at elevated temperatures. Current values during the test are recorded in Table 2 on page 15.

Fuses were installed in the voltage circuit for each specimen so that during the exposure a breakdown in the insulation of one specimen would not affect the voltage applied to the others. Schematics of the test chamber and energizing circuit are given in Figures 6 and 7 respectively. All data acquisition instruments used in the test program are listed in Appendix B.

The chemical spray consisted of 6200 ppm of boron, 50 ppm of hydrazine buffered to a pH of 10.5 with trisodium phosphate. The spray was applied at the top of the vessel through a horizontal spray header at a rate in excess of 0.15 gpm/ft² (actual flow varied from .26 to .81 gpm/ft²).

53442-2 Page 10

FIGURE 6. LOCA/MSLB Pressure Vessel and Auxiliary Equipment

FIGURE 7. Test Schematic for Energizing Specimens

3.4.1 Test Results

During the course of the LOCA/MSLB environment exposure, all energized specimens held the rated current. The capability to supply voltage continuously throughout the test was impaired on some specimens due to insulation failures in the test loop other than at the test samples themselves. The 1.0kV a-c was necessarily terminated on these specimens when the fuse opened. A complete discussion of the anomalies associated with the loss of voltage is given in section 3.4.2.

Insulation resistance values measured at selected times during the LOCA/MSLB exposure are given in Table 1 on page 14.

3.4.2 Post LOCA/MSLB Inspection

At the conclusion of the test profile (Figure 5), the test vessel was flooded with tap water. The specimens were then given a voltage withstand test, and the insulation resistances measured. The results of the insulation resistance tests are given in Table 1. The vessel was then opened and the cause for some of the specimens being unable to hold rated voltage investigated. The test vessel with the specimens in place is shown in Figure 8. Figure 9 shows the test specimens after removal from the test vessel.

The extension wires were cut inside the vessel so that the mandrel could be removed. This also allowed the test vessel penetrations to be inspected. It was found that some of the wires in the penetration had a low insulation resistance and would not pass the 3.6kV a-c voltage withstand test. The specimens associated with the penetration wires having a low

insulation resistance were retested immersed in water (see Figure 4). The retest of specimens 2-1R, 2-2B, and 2-5W2 showed high values of insulation resistance and all specimens passed the voltage withstand test. The low values previously measured on these specimens can therefore be attributed to the test vessel penetrations and not the specimens.

FIGURE 8. Test Chamber and Samples

FIGURE 9. Mandrel After Removal from Vessel

58442-2

3.4.2 Post LOCA/MSLB Inspection (continued)

Some specimens had high values of insulation resistance throughout the simulated LOCA/MSLB test but dropped in insulation resistance or did not pass the voltage withstand test when the vessel was flooded with water. It was found that the low values were caused by cracks in the extension wire insulation away from the mandrel area. The samples again had high insulation resistance values and passed the voltage withstand test when the mandrel was removed from the vessel, the extension wires repaired, and the mandrel re-immersed in water. The insulation values are given in Table 1.

The remaining specimens had cracked wire insulation on the test loops around the mandrel. In these cases, the specimens were removed from the mandrel and individually immersed in water for test. In this way, the cracked wire could be isolated. The remaining specimens, except 2-5B, gave high insulation resistance values and passed the voltage withstand tests when tested with the cracked wire insulation out of the water. This could not be done with specimen 2-5B since the crack in the wire insulation was too close to the end of the cable breakout. An insulation resistance value could not be obtained on this specimen because the surface leakage gave an erroneous value. This specimen did, however, pass the voltage withstand test using an aluminum foil ground plane.

End cap assembly 2-IW1 had a dielectric failure through the end of the cap after repeated over-voltage testing (up to 6kV a-c) used to locate the cracked wire insulation during the post-test investigation. The failure occurred at the end of the cap where the cut strands of the No. 12 wire contacted the end cap.

None of the low insulation resistances recorded during the test were attributable to the Raychem test samples themselves.

3 4 2 Post LOCA/MSLB Inspection (continued)

Visual examination of the sleeves used over the cable breakouts and end caps showed surface degradation and some superficial crazing. This was most apparent on specimens 2-4 and 2-5.

A summary of the findings during the post LOCA/MSLB investigation is given in Table 3 on page 16.

4.0 <u>CONCLUSIONS</u>

Six test specimen loops, each containing four cable breakout assemblies and four end cap assemblies, were subjected to an extensive test program including thermal aging, radiation exposure, and simulated LOCA/MSLB environmental exposure. During the LOCA/MSLB exposure, the specimens were energized at rated current and voltage.

All specimens demonstrated satisfactory electrical performance at the conclusion of the test program. Wire insulation cracks and low resistance of some wires in the test vessel penetrations caused apparent low values in some of the specimens, but subsequent testing substantiates the functional ability of these assemblies. All specimens had high insulation resistance values and (except for one end cap assembly) passed the voltage withstand test at the conclusion of the program.

The results of this comprehensive test program confirm, by type testing, the adequacy and suitability of the Raychem cable breakout and end cap assemblies for use on Class IE systems within the containment of a nuclear power generating station.

Page 15

REFERENCES

- (1) IEEE Standard 323-1974, "IEEE Standard for Qualifying IE Equipment for Nuclear Power Generating Stations."
- (2) IEEE Standard 383-1974, "IEEE Standard for Type Test of Class IE Electric Cables, Field Splices, and Connections for Nuclear Power Generation Stations."

			=	NSULATION	TABLE 1 RESISTANC	E (OHMS)								
				SPEC	I MEN NUMB	SER							<u> </u>	
TEST CONDITIONS	TEMPERATURE	PRESSURE (ps1g)	R	8	2-1 WI	M2	R	8	 7-7	M2	æ	8		M2
Initial (Baseline) (1)	Ambient	0	4×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰
After Aging (2)	Ambient	0	 >1×10 ⁸	>1×10 ⁸	>1×10 ⁸	1×10 ⁸	>1×10 ⁸ >	1×10 ⁸	1×10 ⁸	1x10 ⁸	1×10 ⁸	>1×10 ⁸	>1×10 ⁸	1×10 ⁸
After Irradiation (1)	Ambîent	0	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰
In Test Vessel (1)	Ambient	0	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	4×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰
During Simulated LOCA/MS Test (See Figure 5)	iLB													
After 12 mínutes	314 157	66	 (4)	3.0x10 ⁶	7.0×10 ⁶ (5.0×10 ⁶	3.0×10 ⁶	(1)	7.0×10 ⁶	.0x10 ⁶	3.5×10 ⁶	3.3×10 ⁶	7.5×10 ⁶ [6	.5×10 ⁶
After 56.2 hours	285 141	3 6		4.0×10 ⁶	1.8×10 ⁷	1.4×10 ⁷	9.0x10 ⁵ 8	3.0×10 ⁵ 8	3.0×10 ⁵	2.0×10 ⁷	5.4×10 ⁶	5.0×10 ⁶	1.9×10 ⁷	.5×10 ⁷
After 152.2 hours	250 121	15		(3)	2.5×10 ⁷	2.9×10 ⁷	(3)	(4)	9.5x10 ⁷	1.0x10 ⁷	2.2×10 ⁷	2.0×10 ⁷	2.8x10 ⁷	.0×10 ⁷
After 248.2 hours	230 110	6			5.2×10 ⁷	6.0×10 ⁷			3.5x10 ⁸ 8	3.5×10 ⁷	2.4×10 ⁷	2.4×10 ⁷	7.0×10 ⁷	0×10 ⁷
After 381 hours	230 110	9			5.5×10 ⁷	6.0×10 ⁷			6.2×10 ⁵	1.1×10 ⁸	3.2×10 ⁷	3.7×10 ⁷	9.5×10 ⁷	.5×10 ⁷
After 383 hours	210 99	0			1.6×10 ⁸	1.6×10 ⁸			(3)	3.0x10 ⁸	5.0×10 ⁷	7.0×10 ⁷	2.0×10 ⁸	1.4×10 ⁸
After 720 hours	210 99	0			1.2×10 ⁸	1.2×10 ⁸				2.6×10 ⁸	9.0x10 ⁵	5.0×10 ⁷	2.0x10 ⁸	2.1x10 ⁸
Test Vessel Filled with Water	1 1	ţ				2.5×10 ¹⁰				7.0×10 ⁷			601×7.2	2.5×10 ⁹
Mandrel Removed from Vessel and Immersed in Water	 	ŀ	3.5×10 ¹⁰	 4.0×10 ¹⁰	1.4×10 ⁷			3.4×10 ⁹			1.2×10 ¹⁰	 >5.0×10 ¹⁰		
Specimens Removed from Mandrel and Tested in Water		:					3.0×10 ⁷		3.8×10 ⁹					
(1) 5.0 \times 10 ¹⁰ is the	naximum însulati	ion resistan	sce readat	ole at 500	V d-c wit	h the spi	ecific te	st equìp	ment.					
(2) 1.0 \times 10 ⁸ is the m	aximum insulatic	on resistan	ce readab	le at 500V	d-c with	the spe	cific tes	t equipm	ent.					
(3) Subsequent test sh	owed low value o	due to cracl	ks in the	wire insu	lation.									

(5) No insulation resistance value could be obtained since crack in wire insulation was too close to specimen. (Specimen passed VWT.)

(4) Subsequent test showed low value due to the electrical penetration in the test vessel.

58442-2 Page 16

NOTE: *All specimens (except 2-1W1; ref. p. 11) passed a voltage withstand test of 3.6kV a-c for 5 minutes at each test point excluding post aging and during the simulated event.

TEST CONDITIONS	TEMPERATU	JRE PRESSURE						2	4			2.6		
	(<u>'</u> F) ((bisq) ().	~		IM	W2	R	8	<u> </u>	M2	R	8	MI I	M2
Initial (Baseline) (1)	Ambient	0	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰ >5	1 01 01 ×	5×10 ¹⁰
After Aging (2)	Ambient	0	>1×10 ⁸	>1×10 ⁸	>1×10 ⁸	>1×10 ⁸ >	1×10 ⁸ >	√1×10 ⁸ >	1x10 ⁸	>1×10 ⁸	 >1×10 ⁸	 >1×10 ⁸ >1	x10 ⁸ 0	+1×10 ⁸
After Irradiation (1)	Ambient	0	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰	<5×10 ¹⁰	5×10 ¹⁰	>5×10 ¹⁰	 >5×10 ¹⁰	>5×10 ¹⁰	x10 ¹⁰	5×10 ¹⁰
In Test Vessel (1)	Ambient	0	>5×10 ¹⁰	5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰	>5×10 ¹⁰ >5	0101×	5×10 ¹⁰
<pre>During Simulated LOCA/MSLB Test (See Figure 5)</pre>														
After 12 minutes	314 15	17 66	2.0×10 ⁷	1.9×10 ⁷	2.2×10 ⁷	2.0×10 ⁷ 2	.1×10 ⁷ 5	2.1×10 ⁷ 2	.2×10 ⁷	2.7×10 ⁷	 2.9×10 ⁶	 3.0×10 ⁶ 6.1	0×10 ⁶	7.0×10 ⁶
After 56.2 hours	285 14	1 39	1.9×10 ⁷	(3)	3.1×10 ⁷	(3)	.2×10 ⁷ 1	1.8×10 ⁷ 2	.8×10 ⁷	3.3×10 ⁷	 3.5x10 ⁶	 3.0×10 ⁶ 1.	3×10 ⁷	1.5×10 ⁷
After 152.2 hours	250 12	1 15	2.7×10 ⁷		1.0x10 ⁸	_) 01x0.	(3) 8	5×10 ⁷	1.1x10 ⁸	 1.9×10 ⁷	 1.5×10 ⁷ 2.	4×10 ⁷ [5	2.5×10 ⁷
After 248.2 hours	230 11	0 6	4.5×10 ⁷		1.3×10 ⁸		.5x10 ⁷		1×10 ⁸	2.4×10 ⁵	2.0×10 ⁷	 2.0×10 ⁷ 4.:	3×10 ⁷ 1	1.7×10 ⁷
After 381 hours	230 11	0 6	(3)		1.3×10 ⁸	<u></u>	.0×10 ⁷	_=	.2×10 ⁸	(4)	3.0×10 ⁷	 2.4×10 ⁷ 6.4	0×10 ⁷ 5	5.8×10 ⁷
After 383 hours	210 9	0 6		2.3x10 ⁸		1.6×10 ⁸	<u> </u>	1.1×10 ⁸	<u> </u>	1.3×10 ⁷	3.3x10 ⁷	 1.4×10 ⁸ 1.	4×10 ⁸	
After 720 hours	210 9	0 6		1.5×10 ⁸		3.0×10 ⁷		2×10 ⁸		(3)	2.6×10 ⁷	1.0×10 ⁸ 1.	1×10 ⁸	
Test Vessel Filled with Water	1	, , ,		2.6×10 ⁹			0	601x0.1			† 2.4×10 ¹⁰	 1.4×10 ⁹ 1.	6×10 ¹⁰	
Mandrel Removed from Vessel and Immersed in Water	;	!	>5×10 ¹⁰			2.5x10 ⁹ 3	orto.			9.0×10				
Specimens Removed from Mandrel and Tested in Water	;	1	4.2×10 ⁷			<u>=</u>	2)			.5.0x10 ¹⁰				

58442-2 Page 17

58442-2 Page 18

				1	1				CURRENT	(AMPERES	~				-
TEST CONDITIONS	TEMPERA ("F)		PRESSURE [R 2-		R 5-	8	R 2		- <u>-</u>	8	-7 	8	R Z	8
Before Start of Te	st Ambie	ut.	1	20.0	20.2	20.5	20.9	20.0	21.4	21.0	21.3	20.4	20.6	20.1	18.2
During Test (See Figure 5)															
12 minutes	314	157	66	16.4	16.6	17.0	17.2	17.3	17.6	17.1	17.4	16.9	17.0	16.6	16.3
56.2 hours	285	141	 6£	17.1	17.1	17.7	17.9	17.9	18.2	17.6	17.9	17.4	17.4	17.0	16.7
152.2 hours	250	121	15	16.9	17.7	18.4	18.6	18.5	19.0	18.4	18.7	18.2	18.3	17.9	16.9
248.2 hours	230	110	 9	18.3	18.0	18.7	18.9	18.9	19.4	19.0	19.3	18.6	18.6	18.2	17.3
381 hours	230	110	9	1 6.71	18.1	18.6	18.7	18.7	19.1	18.6	18.9	18.2	18.5	18.0	17.0
383 hours	210	66	0	18.5	18.6	18.7	18.9	18.9	19.4	0.61	19.4	18.6	18.8	18.3	17.3
720 hours	210	66	0	18.4	18.4	18.6	18.8	18.8	19.3	18.9	19.2	18.6	18.6	18.3	16.7
									_	-	_	-	-	-	-

TABLE 2 CURRENT MONTFORING OF SPECTMENS DURING SIMULATED LOCA/MSLB ENVIRONMENT

TABLE 3 POST LOCA/MSLB INVESTIGATION SUMMARY

Specimen <u>No.</u>	Aging Time <u>at 150°C</u>	Time Voltage Was Applied	Results
2-1R	1500 Hours	12 Minutes	Penetration failure. Passed subsequent VWT.
2-1B	1500 Hours	7 Days	Cracks in wire insulation. Passed subsequent VWT.
2-1W1	1500 Hours	31 Days	Completed test at rated voltage with good IR's. Dielectric failure of end cap during repeated VWT's.
2-1W2	1500 Hours	31 Days	Completed test.
2-2R	1000 Hours	1 Day	Cracks in wire insulation. Passed subsequent VWT.
2-2B	1000 Hours	12 Minutes	Penetration failure. Passed subsequent VWT.
2-2W1	1000 Hours	3 Days	Cracks in wire insulation. Passed subsequent VWT.
2-2W2	1000 Hours	31 Days	Completed test.
2-3R	1000 Hours	31 Days	Post test failure in wire insulation. Passed subsequent VWT.
2-3B	1000 Hours	31 Days	Post test failure in wire insulation. Passed subsequent VWT.
2-3W1	1000 Hours	31 Days	Completed test.
2-3W2	1000 Hours	31 Days	Completed test.

TABLE 3 (CONT.) POST LOCA/MSLB INVESTIGATION SUMMARY

Specimen <u>No.</u>	Aging Time <u>at 150°C</u>	Time Voltage <u>Was Applied</u>	Results
2-4R	Unaged	15 Days	Cracks in wire insulation. Passed subsequent VWT.
2-4B	Unaged	1 Day	Crack in cable jacket and wire insulation. Passed subsequent VWT.
2-4W1	Unaged	31 Days	Completed test.
2-4W2	Unaged	1 Day	Cracks in wire insulation. Passed subsequent VWT.
2-5R	Unaged	31 Days	Penetration failure. Passed subsequent VWT.
2-5B	Unaged	4 Days	Cracks in wire insulation. Passed subsequent VWT.
2-5W1	Unaged	31 Days	Completed test.
2-5W2	Unaged	18 Days	Penetration failure. Passed subsequent VWT.
2-6R	1500 Hours	30 Days	Post test failure in wire insulation. Passed subsequent VWT.
2-6B	1500 Hours	31 Days	Completed test.
2-6W1	1500 Hours	31 Days	Completed test.
2-6W2	1500 Hours	31 Days	Completed test.

<u>APPENDIX A</u>

CERTIFICATION OF RADIATION DOSE

Atomics international Division 8900 De Soto Avenue Canoga Park, California 91304 (213) 341-1000

CERTIFICATE OF GAMMA RADIATION DOSE

CUSTOMER Wyle Laboratories
PURCHASE ORDER NO. 8057 Wyle Job No. NDQ 58442
DATE IN October 26, 1979
TIME IN 11:00 AM
DATE OUT November 21, 1979
TIME OUT 8:00 AM
MINIMUM DOSE 2.0 X 10 ⁸ RADS
MAXIMUM DOSE 2.9 X 10 ⁸ RADS

Signature RKPaschall

<u>APPENDIX B</u>

LIST OF ACQUISITION INSTRUMENTS

	00280	ACM ACM	SPLICES			58442 - 2	
	CUSTO	MER	RAYCHEM CORPORATIO	Ą		10/25/79	-
	PART		SEE REC. INSP.		- TEST BY	T. Knigh	L.
	S/N		SEE REC. INSP.		WITNES		
WYLE LABORATORI	E S TEST: -		FUNCTIONAL		I		
		MODEL		WYLE	CALIBRA	VTION	
EQUIPMENT	MANUFACTURER	NO.	RANGE	Ő	LAST	DUE	ACCY.
Megohummeter	Ere d Irans. Co	1620	1Ma to >200K4a	2248	12-10-79	06-15-80	±5%
Digital V.O.M.	Fluke	8000A	0-1200 VAC 0- 200 mA-AC	7684	05-03-79	05-04-80	Mfg. Spec.
Amp Probe	Fluke	N/A	1000:1 Ratio	1691	06-25-79	06-29-80	+3%
A. C. Hipot	As sociated Research	5133	<u>0-6kv ac</u>	5086	06-27-79	01-13-80	±3%
A. C. Hipot	Associated Research	5133	0-6kv AC	5086	01-17-80	07-20-80	±3%
		i					
W 614 C O.C. Approval Aut						SHEET	OF

-

58442-2 Page B1

		1 IdS	CES			58442 -	~
	SPECIN	MEN RAYC	HEM CORPORATION			7/31/79	
	PART	NO. SEE	RECEIVING INSP.		- TEST 0	v T. Knigt	tt
	S/N	3EL	KELETYTING THAT.		WITNE	8	
WYLE LABORATORIE	• TEST: -	BASE	LINE FUNCTIONAL		1		
		MODEL		WYLE	CALIB	ATION	
EQUIPMENT	MANUFACTURER	NO.	RANGE	NO.	LAST	DUE	ACCY.
A. C. Hibot	Associated Research	5133	0-6kV	5086	06-27-79	01-13-80	+3%
Insulation Tester	Arizona Inst.	N/A	3MA - 50KMA 0-500 VDC	51027	03-01-79	09-02-79	±4%
Digital Voltmeter	Fluke	8000A	0-2 Ohms	7317	07- <u>10-79</u>	07-13-80	Mfg. Spec.
W614 C QC. Approval Aut						SHEET	or

-2 Page B2

	SPECI	MEN SPLI	CES CHEM CORPORATION		1900	40, <u>58442 -2</u> - 77780	
	PART	NO.	RECEIVING INSP.			BY N. Schmitz	
	N/5		RECEIVING INSP.			ESS	
YLE LABORATORII	EST: _	ACCI	DENT SIMULATION		1		
EQUIDACIT		MODEL		WYLE	CALI	RATION	!
	MANUFACTURER	o Z	RANGE	ŊŊ	LAST	DUE	ACCY.
ectrostatic tmeter	LIECTTICAL Instrum. Ser.	University	0-1000 Volt	8416	11-30-79	03-20-80	±1.0%
vers ta t	Superior Elect. Co.	12580	0-28 Amp 0-280 VAC	N/A	ISAS	M CALIBRATION	
insformer	West inghouse	6C9B-071	240/480 VAC 12KVA 12KVOut	N/A	LSAS	EM CALIBRATION	
ital Multimeter	Fluke	8010A	0- 200 mA 0-2000 VAC	8188	11-12-79	11-12-80	±0.5%
Probe	Fluke	N/A	1000:1 Ratio	7691	06-25-79	0629-80	±3.0%
int	Weston	0041218	50Amp/50mV	8183	01-15-79	01-20-80	±0.5%
Int	Weston	0041218	50Amp/50mV	8184	01-15-79	01-20-80	±0.5%
nt	Weston	0041218	50Anp/50nV	8185	01-15-79	01-20-80	±0.5%
erstat (Typ. 3)	Superior Elect. Co.	1258C	0- 28 Amp 0-280 VAC	N/A	ITSY2	M CALIBRATION	
nsformer (Typ. 3)	UNK.	N/A	1000:6 Ratio	N/A	SYSTI	M CALIBRATION	
turi	Barco	550	1-300 дря	8166	12-16-79	12-16-80	+ -1%
ssure Transducer	Validyne	DP15	0-100 ps1	7460	SYSTI	CALIBRATION	±.25%
order	н.Р.	7132A	0-500 mV	7613	SYSTI	EM CALIBRATION	10.2%
order	н.Р.	7132A	0-500 mV	2612	SYSTI	CALIBRATION	±0.2%
ta Press. Gauge	Barton	04-49053-1	0-80 in W.C.	7784	09-03-79	01-03-80	1.25%
. Thermometer	Fluke	2160A	-328 to +750 ⁰ F	8290	09-04-79	09-07-80	±20F
. Thermometer	Fluke	2160A	-328 to +750 ⁰ F	8401	10-12-79	10-12-80	±2°F
. Thermometer	Fluke	2160A	-328 to +750 ⁰ F	8032	08-13-79	08-17-80	±20F

58442-2 Page B3