Raychem Energy Division

Report

Title ENVIRONMENTAL QUALIF OF RAYCHEM WCSF-N NU	ICATION TEST REPORT CLEAR IN-LINE CABLE	Pages: 30
SPLICE ASSEMBLIES		Enclosures:
WYLE REPORT NO. 5844	2-1	
Report Number:	Date:	
EDR-5032	May 1, 1981	
Tested by:	Signature:	Date:
Wyle Laboratories	(see report)	May 15, 1980
Prepared by:	Signature:	Date:
C. F. Albertalli	Albertalli	May 1, 1981
Approved by:	Signature:	Date:
R. J. Scott for Product Management	R. J. Sett	1 May 81
Approved by:	Signature:	Date:
G. J. Clarke for Technical Operations	grandy !. Chuke	May 1 8/
Raychem Corporation Energy Division	······································	

TEST REPORT

WYLE LABORATORIES SCIENTIFIC SERVICES & SYSTEMS GROUP WESTERN OPERATIONS, NORCO FACILITY

REPORT NO	58442-1
OUR JOB NO.	NDQ 58442
CONTRACT	
YOUR P. O. NO.	A01183

Raychem Corporation 300 Constitution Drive Menlo Park, California 94025

> May 15, 1980 DATE

ENVIRONMENTAL QUALIFICA OF RAYCHEM WCSF-N NUCLEAR IN-LINE FOR RAYCHEM CORPOR MENLO PARK, CAL	CABLE SPLICE ASSEMBLIES RATION IFORNIA WHEN PROFESSION WHEN PR
STATE OF CALIFORNIA COUNTY OF RIVERSIDE }ss. <u>Ray C. Myrick</u> , being duly sworn, deposes and says: That the information contained in this report is the result of complete and carefully conducted tests and is to the best of his knowledge true and correct in all respects. <u>May C. Myrick</u> SUBSCRIBED and sworn to before me this day of <u>May</u> , 19 80 Notary Public in and for the County of Riverside, State of California <u>My Commission expires</u> OFFICIAL SEAM (ATHERINE C KELTY NOTARY PUBLIC - CALIFORNIA)	DEPARTMENT DYNAMICS DEPARTMENT DYNAMICS DEPT. MGR. D. J. Anderson TEST ENGINEER Mayne Man REGISTERED W. Franz PROFESSIONAL D. Majner ENGINEER DCAS-QAR VERIFICATION

CONTENTS

Section	<u>Title</u>		Page
1.0	SUM	IMARY	1
2.0	TES	T SPECIMENS	1
3.0	TES	T PROGRAM	3
	3.1	Pretest Inspection	3
	3.2	Thermal Aging	3
	3.3	Radiation Exposure	6
	3.4	Loss of Coolant Accident and	6
		Main Steamline Break (LOCA/MSLB)	
		Environmental Exposure	
4.0) CON	ICLUSIONS	12
	TAB	LES	13
	APP	PENDICES	

58442-1

FIGURES

Title	<u>Page</u>
Figure 1 - Sample Construction	2
Figure 2 - Mandrel and Samples	4
Figure 3 - Mandrel and Samples Immersed in Water	5
Figure 4 - LOCA/MSLB Test Profile	6
Figure 5 - Test Chamber Schematic	8
Figure 6 - Schematic of Energizing Circuitry	8
Figure 7 - Test Chamber and Samples	10
Figure 8 - Mandrel After Removal from Vessel	10
TABLES	
Table 1 - I.R. Values	13
Table 2 - Current Monitoring of Specimens During	14
Simulated LOCA/MSLB Environment	
Table 3 - Post LOCA/MSLB Investigation Summary	15
APPENDICES	
Appendix 1 - Certificate of Radiation Dose	A1
Appendix 2 - Data Acquisition Instruments	A2

1.0 <u>SUMMARY</u>

Six Raychem test specimens each consisting of three in-line type splices were subjected to a test program based on the guidelines of IEEE Standards 323-1974⁽¹⁾ and 383-1974⁽²⁾ to determine their suitability for service within the containment of a nuclear power generating station.

The test program consisted of:

- 1. Thermal aging (O, 1000, 1500 hours @ 150°C)
- 2. Radiation exposure (200 290 Mrads)
- 3. Simulated loss of coolant accident combined with main steamline break (LOCA/MSLB) conditions while the specimens were energized at rated current and voltage. (25 Arms, 1000 Vrms)

The electrical integrity of the specimens was evaluated by:

- 1. Insulation resistance measurements at 500Vd-c
- 2. Voltage withstand tests at 3600 Volts rms for 5 minutes
- 3. The ability to maintain electrical loading at rated voltage and current during the simulated LOCA/MSLB.

The splice systems demonstrated satisfactory performance in this test program and no failures were recorded in any of the 18 splices tested.

The test program was conducted by Wyle Laboratories, Norco, California during the period of August, 1979 to February, 1980.

2.0 TEST SPECIMENS

Each test specimen was comprised of three splices forming a test loop as shown in Figure 1. The materials used to make the splice systems are also listed. A total of six specimens, or eighteen splices, were used for the test program.

Page 2

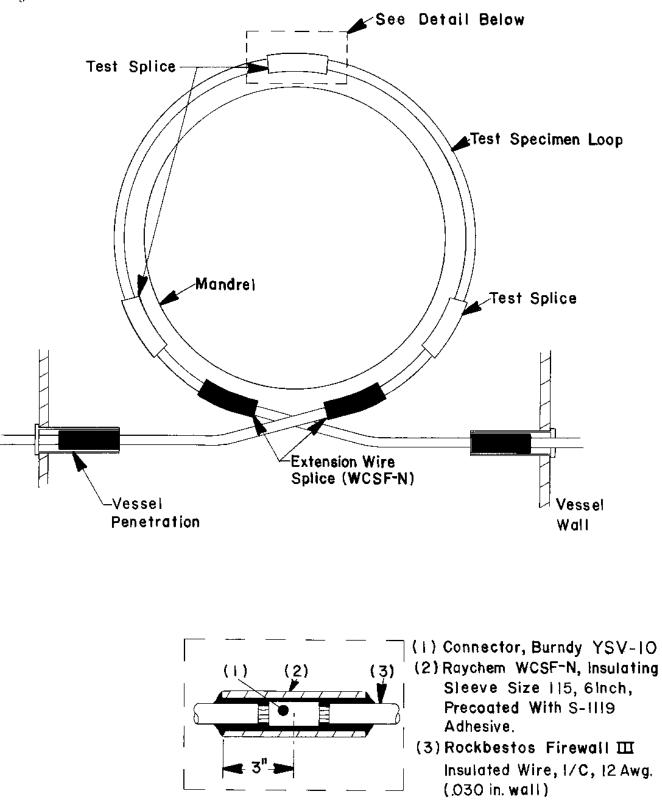


FIGURE 1. SAMPLE CONSTRUCTION

3.0 TEST PROGRAM

3.1 <u>Pretest Inspection</u>

The specimens were visually inspected upon receipt at Wyle Laboratories. There was no evidence of damage due to shipping.

3.1.1 Functional Test (Baseline Data)

Each specimen was immersed in water and given a voltage withstand test of 3.6kVrms a-c for five minutes. All three splices were immersed during this test. The voltage was applied between the specimen conductor and the grounded tank or vessel. All specimens passed the test.

While still immersed for the above test, the insulation resistance (IR) of each specimen was measured at 500V d-c. These results are given in Table 1 on page 13.

The continuity of each specimen loop was also verified with a low voltage ohmmeter.

3.2 Thermal Aging

Two of the six specimen loops were wrapped onto a 20-inch diameter stainless steel mandrel and tied in place. The mandrel and specimens were placed in an air-circulating oven operating at 150°C (302°F) for 500 hours. At that time, two additional specimen loops were added to the mandrel, and the oven aging continued for another 1000 hours. After removal from the oven, the two remaining specimen loops were then added to the mandrel.

Page 4

<u>Specimen No.</u>	Thermal Aging <u>(Hours at 150°C)</u>
1-1	1500
1-2	1500
1-3	1000
1-4	1000
1-5	Unaged
1-6	Unaged

The mandrel, with the specimens in place, is shown in Figure 2.

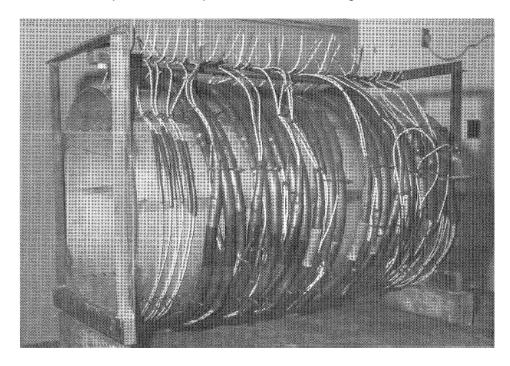


FIGURE 2. Mandrel and Samples

(Specimens 1-1 through 1-6 are located at the extreme left of the mandrel.)

- Note Several other types of product specimens were also tested in this program and are shown on the mandrel along with the splice specimens. This report covers only the in-line splice specimens. The other specimens are the subject of separate reports.
- 1. Both 1000 and 1500 hours exceed the required aging time to simulate 40 year life for the cable.

3.2.1 Functional Tests

The mandrel with the specimens in place was immersed in water and the insulation resistance measurements made. This was accomplished by splicing long extension leads to each end of the test loops. The splices between the specimens and the extension leads were also covered with WCSF-N heat shrinkable tubing. The mandrel immersed in water is shown in Figure 3.

All specimens again passed the five minute, 3.6kV a-c voltage withstand test. The insulation resistance values are given in Table 1 on page 13.

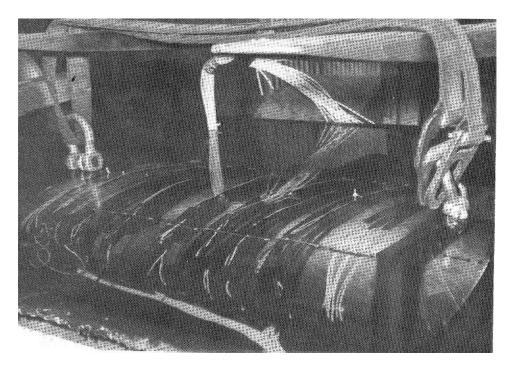
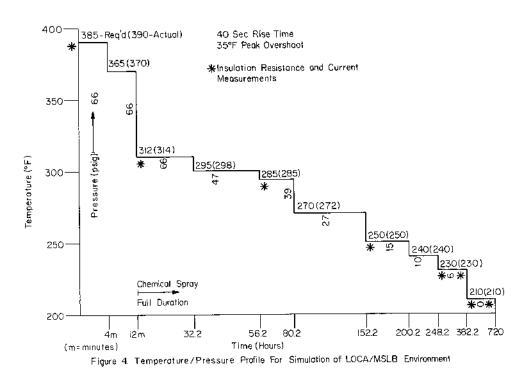


FIGURE 3. Mandrel and Samples Immersed in Water


3.3 Radiation Exposure

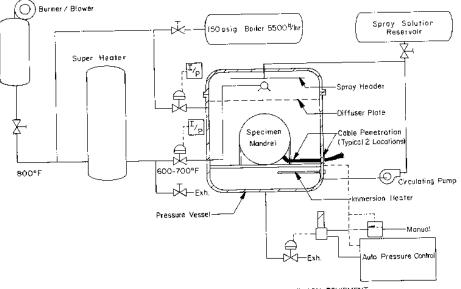
The specimens, while still on the mandrel, were subjected to gamma radiation from a Cobalt-60 source. The total dose given the specimens ranged from 2.0×10^8 to 2.9×10^8 rads. The dose rate was between 0.32 and 0.47 x 10^6 rads per hour. The certificate of radiation dose is shown in Appendix 1.

3.3.1 Functional Tests

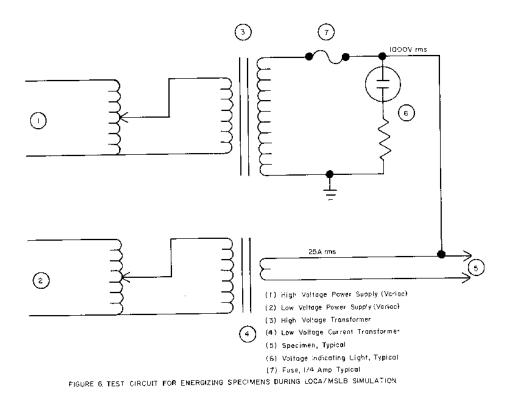
The functional tests were again performed as described in 3.1.1* All specimens passed the voltage withstand test. The insulation resistance values are given in Table 1.

3.4 Loss of Coolant Accident and Main Steamline Break (LOCA/MSLB) Environmental Exposure

3.4 <u>Loss of Coolant Accident and Main Steamline</u> <u>Break (LOCA/MSLB) Environmental Exposure (continued)</u>


The specimens on the mandrel were placed in a test chamber capable of exposing the specimens to the steam and chemical spray environment shown in Figure 4.

The extension leads were brought out through penetrations in the vessel to allow the specimens to be energized during the exposure. The specimens were energized at 1.0kV a-c to ground and carried a current of 25 amperes at 25°C ambient at the start of the simulated accident. The current was allowed to drop as the resistance in the conductors increased at elevated temperatures. Current values during the test are recorded in Table 2 on page 14.


Fuses were installed in each specimen circuit so that during the exposure a breakdown in the insulation of one specimen would not affect the voltage applied to the others. Schematics of the test chamber and energizing circuit are given in Figures 5 and 6 respectively. All data acquisition instruments used in the test program are listed in Appendix 2.

The chemical spray consisted of 6200 ppm of boron, 50 ppm of hydrazine buffered to a ph of 10.5 with trisodium phosphate. The

spray was applied at the top of the vessel through a horizontal spray header at a rate in excess of 0.15 gpm/ft² (actual flow varied from .26 to .81 gpm/ft²).

3.4.1 Test Results

During the course of the LOCA/MSLB environment exposure, all specimens held the rated current. The capability to supply voltage continuously throughout the test was impaired due to insulation failures in the test loop other than at the splice specimens themselves. The 1.0kV a-c was necessarily terminated on these specimens when the fuse opened. A complete discussion of the anomalies associated with the loss of voltage is given in 3.4.2.

Insulation resistance values measured at selected times during the LOCA/MSLB exposure are given in Table 1 on page 13.

3.4.2 Post LOCA/MSLB Inspection

At the conclusion of the test profile (Figure 4), the test vessel was flooded with tap water. The specimens were then given a voltage withstand test and the insulation resistances measured. The results of the insulation resistance tests are given in Table 1. The vessel was then opened and the cause for some of the specimens being unable to hold rated voltage investigated. The test vessel with the specimens in place is shown in Figures 7 and 8.

58442-1 Page 10

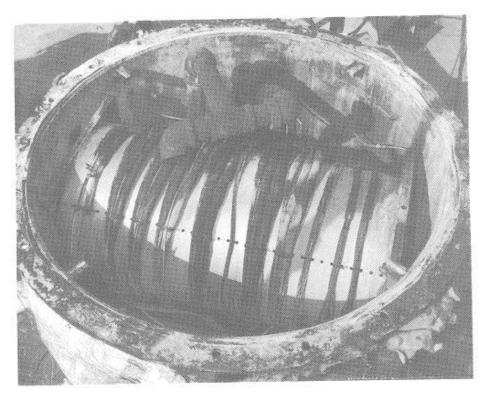


FIGURE 7. Test Chamber and Samples

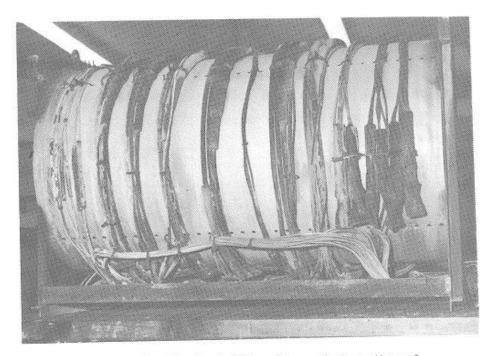


FIGURE 8. Mandrel After Removal from Vessel

3.4.2 Post LOCA/MSLB Inspection (continued)

The extension wires were cut inside the vessel so that the mandrel could be removed. This also allowed the penetrations to be inspected. It was found that some of the wires in the penetration had a low insulation resistance and would not pass the 3.6kV a-c voltage withstand test. The specimens associated with the penetration wires having a low insulation resistance were retested. The retest of specimens 1-3 and 1-4 showed high values of insulation resistance and both specimens passed the voltage withstand test. The low values previously measured on these specimens can therefore be attributed to the penetrations and not the specimens.

Specimens 1-1 and 1-2 had cracked wire insulation near the splice sleeves and could not be immersed in water for the testing. In these cases, a metal foil ground plane was wrapped around the outside of the still wet splice sleeve and the insulation resistance and voltage withstand tests conducted. All six splices passed both tests after the sources of insulation failure elsewhere in the test loops were isolated.

Visual examination of the splice sleeves showed surface degradation and some crazing. This was most apparent in specimens 1-5 and 1-6.

A summary of the findings is given in Table 3 on page 15.

4.0 <u>CONCLUSIONS</u>

Six test specimen loops, each containing three splices, were subjected to an extensive test program including thermal aging, radiation exposure, and simulated LOCA/MSLB environmental exposure. During the LOCA/MSLB exposure, the specimens were energized at rated current and voltage.

All specimens demonstrated satisfactory electrical performance at the conclusion of the test program. Wire insulation cracks and low resistance of some wires in the test vessel penetrations caused apparent low values in some of the specimens but subsequent testing substantiates the ability of these splices to maintain electrical integrity throughout the test program. All specimens had high insulation resistance values and passed the voltage withstand test at the conclusion of the program.

The results of this comprehensive test program confirm, by type testing, the adequacy and suitability of the Raychem WCSF-N splice sleeves for use on Class IE systems within the containment of a nuclear power generating station.

REFERENCES

- (1) IEEE Standard 323-1974, "IEEE Standard for Qualifying IE Equipment for Nuclear Power Generating Stations".
- (2) IEEE Standard 383-1974, "IEEE Standard for Type Test of Class IE Electric Cables, Field Splices, and Connections for Nuclear Power Generation Stations".

TABLE 1 INSULATION RESISTANCE (OHNS)

Test Conditions	Temperature (0F) (0C	ture (oc)	Pressure (pstg)	1-1	1-2	Spectmen Number 1-3	Number 1-4	1-5	9-1
Initial (Baseline) (1)	Ambient	ı		5.0×10 ¹⁰			>5.0x10 ¹⁰	>5.0×10 ¹⁰	>5.0×10 ¹⁰
After Aging (2)	Ambient	t	T	>1.0×10 ⁸	>1.0×10 ⁸	>1.0x10 ⁸	>1.0x10 ⁸	>1.0x10 ⁸	>1.0x10 ⁸
lation	Ambient	ı	1	>5.0x10 ¹⁰	>5.0x10 ¹⁰		>5.0x10 ¹⁰		>5.0x10 ¹⁰
In Test Vessel (1)	Ambient	ı	ł	>5.0x10 ¹⁰		>5.0x10 ¹⁰	>5.0x10 ¹⁰	5.0x10 ¹⁰	5.0x10 ¹⁰
During Simulated LOCA/MSLB Test (See Figure 4)									
After 12 minutes	314	157	66	1.2×10 ⁷	1.3×10 ⁷	1.8×10 ⁷	1.8x10 ⁷	3.6×10 ⁷	3.4x10 ⁷
After 56.2 hours	285	141	39	(8)	(£)	2.2x10 ⁷	2.2×10 ⁷	3.0x10 ⁷	3.0x10 ⁷
After 152.2 hours	250	121	15			8.5×10 ⁷	8.0x10 ⁷	9.5x10 ⁷	9.0x10 ⁷
After 248.2 hours	230	011	9			1.9×10 ⁸	1.9x10 ⁸	2.0x10 ⁸	2.2x10 ⁸
After 381 hours	230	0[]	Q			1.9×10 ⁸	1.6x10 ⁸	1.9×10 ⁸	2.0x10 ⁸
After 383 hours	210	66	ı			(4)	4.6x10 ⁸	5.7×10 ⁸	6.2x10 ⁸
After 720 hours	210	66					4.9x10 ⁸		6.0x10 ⁸
Test Vessel Filled with Water	ı	ı	,				5.0×10 ¹⁰		5.0x10 ¹⁰
Mandrel Removed from Vessel and Immersed in Water	ı	,	ı			3.0x10 ¹⁰			
Wet Splice Area Mrapped with Foil for Ground Plane									
Splice 1				2.4x10 ⁸	2.5x10 ⁸				
Splice 2				6.0x10 ⁷	1.4x10 ⁸				
Splice 3				1.1x10 ⁸	1.0x10 ⁸				
(1) 5.0 x 10^{10} is the maximum insulation resistance readable at 500V DC with 1 (2) 1.0 x 10^{8} is the maximum insulation resistance readable at 500V DC with 1 (3) Subsequent test showed low value due to cracks in wire insulation. (4) Subsequent test showed low value due to penetration in vessel.	m insulat m insulat ow value ow value	tion re due to due to	sistance r sistance r cracks in penetrati	eadable at eadable at wire insul on in vesse	500V DC wit 500V DC wit ation. 1,	with the specific test equipment. with the specific test equipment.	fic test eq fic test eq	uipment. uipment.	

Note: All specimens passed a voltage withstand test of 3.6kV AC for 5 minutes at each test point excluding post aging and during the simulated event.

	DURING SIN	AULATED	DURING SIMULATED LOCA/MSLB ENVIRCUMENT	VIRCIMEN	⊑1				
	Tempera	ture	Pressure		បី	irrent	(Amperes	(9	
Test Conditions	(0C)	(<u>o</u> C)	(psig)	-	1-2	1-3	-1-	<u>1-1 1-2 1-3 1-4 1-5 1-6</u>	1-6
Before Start of Test	Ambient	ı	I	25.0	25.0	25.2	25,9	25.5	25.4
During Test (see Figure 4)									
12 minutes	314	157	66	22.1	22.1	22.3	22.7	22.4	22.4
56.2 hours	285	141	39	23.1	23.1	23.4	23.6	23.4	23.5
152.2 hours	250	121	15	24.2	24.2	24.5	24.7	24.5	24.4
248.2 hours	230	011	9	24.4	24.4	24.7	25.2	25.0	24.9
381 hours	230	011	9	24.0	24.1	24.2	24.6	24.4	24.4
383 hours	210	66	ı	24.2	24.0	24.3	24.8	24.5	24.5
720 hours	210	66	I	24.0	23.9	24.1	24.6	24.4	24.4

TABLE 2 CURRENT MONITORING OF SPECIMENS DURING SIMULATED LOCA/MSLB ENVIRCNMENT

58442-1

Page 15

TABLE 3

POST LOCA/MSLE INVESTIGATION SUMMARY

Specimen Loop <u>No.</u>	Aging Time <u>at 150°C</u>	Time Voltage <u>Was Applied</u>	<u>Results</u>
1-1	1500 Hours	3 Days	Cracks in wire insulation. Splices passed subsequent VWT*.
1-2	1500 Hours	3 Days	Cracks in wire insulation. Splices passed subsequent VWT*.
1-3	1000 Hours	18 Days	Penetration failure. Splices passed subsequent immersion and VWT.
1-4	1000 Hours	22 Days	No evidence of failure at end of test. Passed immersion and VWT. Failure attributed to external wiring.
1-5	Unaged	Completed Test	
1-6	Unaged	Completed Test	

*VWT - Voltage Withstand Test

58442-1

<u>APPENDIX 1</u>

CERTIFICATION OF RADIATION DOSE

58442-1 Page A1

Atomics International Division 8900 De Soto Avenue Canoga Park, California 91304 (213) 341-1000

CERTIFICATE OF GAMMA RADIATION DOSE

CUSTOMER	Wyle Laboratories
PURCHASE O Wyle Job No.	
DATE IN	October 26, 1979
TIME IN	11:00 AM
DATE OUT	November 21, 1979
TIME OUT _	8:00 AM
MINIMUM DO	SE2.0 X 10 ⁸ RADS
MAXIMUM D	DSE 2.9 X 10 ⁸ RADS

Signature RKPaschall

58442-1

APPENDIX 2

LIST OF ACQUISITION INSTRUMENTS

	ACCV	+3%	±4%	Mfg. Spec.								5
0. <u>58442</u> 7/31/79 sv T, Knight :ss		01-13-80	09-02-79	07-13-80								SHEET
- JOB NO. - DATE - Test By Witness	CALIBI	06-27-79	03-01-79	07-10-79								
	¥YLE NO.	5086	51027	7317								
SPLICES RAYCHEM CORPORATION SEE RECEIVING INSP. SEE RECEIVING INSP. BASELINE FUNCTIONAL	RANGE	0-6kV	3MR - 50KMR 0-500 VDC	0-2 Ohms								
	MODEL NO.	5/33	N/A	8000A								
SPECIMEN CUSTOMER PART NO. S/N	MANUFACTURER	Associated Research	Arizona Inst.	FJuke								
		A. C. Hipot	Insulation Tester	Digital Voltmeter								W 614 C Q.C. Approval Auto-

10

58442-1 Page A2

		ACCY.	±5%	Mfg. Spec.	±3%	±3%	¥04									đ
58442 10/25/79 T. Knight	ATION	DUE	06-15-80	05-04-80	06-29-80	01-13-80	07-20-80									SHEET
JOB NO. DATE TEST BY WITNESS	CALIBRATION	LAST	12-10-79	05-03-79	06-25-79	06-27-79	01-17-80								-	
	WYLE	ġ	2248	7684	7691	5086	5086					 				
SPLICES RAYCHEM CORPORATION SEE REC. INSP. SEE REC. INSP. FUNCTIONAL		RANGE	1MA to >200KMA	0-1200 VAC 0- 200 mA-AC	1000:1 Ratio	0-6kV AC	0-6kV AC									
	100EL	NO.	1620	8000A	N/A	5133	5133	2								-
SPECIMEN CUSTOMER PART NO. S/N TEST:		MANUFACTURER	Freed Trans. Co.	Fluke	Fluke	Associated Research	Associated Research		-							
		EQUIPMENT	Na na hama tar	Digital V.O.M.	âm Drohe											W 614 C Q.C. Approval

58442-1 Page A3

	SPECIMEN SPECIMEN	MEN				20442	
	GIST	~	RAYCHEM CORPORATION		DATE	1/3/BU	
			SEE RECEIVING INSP.			,	
			SEE RECEIVING INSP.		WITNESS	I	
	÷	ACCI	ACCIDENT SIMULATION		1		-
		MODEL		WYLE	CALIE	CALIBRATION	
EQUIPMENT	MANUFACTURER	NO.	RANGE	ÿ	LAST	DUE	ACCY.
Electrostatic Voltmeter	Electrical Instrum. Ser.	University	0-1000 Volt	8416	11-30-79	03-20-80	\$0,1±
Powerstat	Superior Elect. Co.	1258C	0-28 Amp 0-280 VAC	N/A	ITSYS	SYSTEM CALIBRATION	
Transformer	Westinghouse	6C9B-071	240/480 VAC 12KVA 12KVOut	N/A	SYSTI	SYSTEM CALIBRATION	
Digital Multimeter	Fluke	BOTOA	0- 200 mA	8188	11-12-79	11-12-80	±0.5%
Amp Probe	Fluke	N/A	1000:1 Ratio	7691	06-25-79	06-29-80	±3.0%
Shunt	Weston	0041218	50Amp/50mV	8183	01-15-79	01-20-80	±0.5%
Shunt	Weston	0041218	50Amp/50mV	8184	01-15-79	01-20-80	±0.5%
Shunt	Weston	0041218	50Amp/50mV	8185	01-15-79	01-20-80	±0.5%
Powerstat (Typ. 3)	Superior Elect. Co.	12580	0- 28 Amp 0-280 VAC	N/A	SYSTI	SYSTEM CALIBRATION	
Transformer (Typ. 3)	UNK.	N/A	1000:6 Ratio	N/A	\$YSTI	SYSTEM CALIBRATION	
Venturi	Barco	550	1-300 gpm	8166	12-16-79	12-16-80	11% 1
Pressure Transducer	Validyne	DP15	0-100 psi	7460	ISYS	SYSTEM CALIBRATION	1.25%
Recorder	н.Р.	7132A	0-500 mV	7613	SYSTI	SYSTEM CALIBRATION	±0.2%
Recorder	H.P.	7132A	0-500 mV	7612	SYSTI	SYSTEM CALIBRATION	±0.2%
Delta Press. Gauge	Barton	D4-49053-1	0-80 in W.C.	7784	09- 03-79	01-03-80	±.25%
Dig. Thermometer	Fluke	2160A	-328 to +750 ⁰ F	8290	09-04-80	09-07-80	±20F
Dig. Thermometer	Fluke	2160A	-328 to +750 ⁰ F	8401	10-12-79	10-12-80	±2 ⁰ F
Dig. Thermometer	Fluke	2160A	-328 to +750 ⁰ F	8032	08-13-79	08-17-80	±20F

SPLICES SPECIMEN

JOB NO. 58442 1/3/00 58442-1

Page A4